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Abstract 

Transportation fuels consist of a large number of species that belong to different families of compounds. 

Surrogate fuel representations have been formulated to better understand their fundamental chemical com-

position and to emulate combustion properties. These descriptions are formulated using experiments or 

through computations, which has thus led to the existence of two different notions of surrogates. There is 

further distinction of concepts through the use of physical and chemical surrogates, which are designed to 

emulate those specific properties. Although several surrogate design methodologies have been proposed in 

literature, they do not incorporate information on experimental uncertainty. By addressing this issue, it 

is shown that this information is crucial for the reliable construction of surrogates through computations. 

To incorporate physical fuel properties, a consistent approach through the use of the recent ASTM D2887 

distillation curve standard is discussed. Then, a formal computational procedure is presented that incorpo-

rates information of experimental uncertainties into the surrogate description. It is shown that surrogates 

then describe a feasible region and are hence not unique. Both physical and chemical properties are utilized 

as combustion property targets (CPTs) and consistency with experimental formulations is demonstrated for 

JP-8 and Jet-A (POSF 4658) surrogates. In addition, the use of convex optimization puts existing concepts 

for surrogate representation on a more rigorous basis and several conclusions are drawn, particularly on the 

importance of specific CPTs and weighting factors of regression-based approaches. Also, the effect of using 

simplified models for the evaluation of CPTs on the final surrogate composition is shown by considering the 

example of linear blending rules for ignition delay. Finally, the surrogate representation problem is connected 

to multi-parametric optimization and bounds on surrogate compositions are calculated as a function of the 

experimental uncertainty along with comparisons against experimental results. 
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1. Introduction 

Transportation fuels consist of a large number of compounds that affect physical and chemical properties 

of the mixture. To simplify the complexity, these fuels are often represented by a surrogate description 

[1], which involves choosing a certain set of compounds, usually present in the original fuel, called palette 

compounds, to closely emulate certain properties of the present fuel. The significant challenge is, however, 

to determine the specific composition that best emulates relevant properties of interest while keeping the 

number of compounds small to reduce modeling complexity. The accepted quantities of interest are com-

monly referred to as combustion property targets (CPTs) [2]. These include both physical and chemical 

properties, namely density, viscosity, hydrogen-to-carbon ratio, aromaticity and cetane index [3]. Several 

surrogate studies have pursued these criteria based on empirical correlations or experimental testing [3, 4]. 
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Pitz et al. [5, 6] reviewed efforts for gasoline and diesel fuels on surrogate formulations, kinetic model devel-

opment, and experimental validation. Due to compositional variability of original fuels, it is important to 

choose combustion properties that capture the fuel description while being easy to measure and insensitive 

to procedural uncertainties. Dooley et al. [7] provided a list of CPTs in an aim to further develop a generic 

methodology for gas-phase combustion kinetic phenomena. Colket et al. [8] formulated a roadmap for the 

construction of jet fuel surrogates along with introducing and considering multiple surrogates for a particular 

fuel, depending on the CPTs. 

Currently, two different paradigms of surrogates exist in the literature, namely experimental and com-

putational surrogates. The former is the more widely adopted approach [7], which uses only experimental 

procedures to determine CPTs, from which surrogates are then determined. In contrast, the formulation of 

computational surrogates are a more recent approach and are determined by evaluating CPTs using only 

simulations. The accuracy of these so-defined computational surrogates in emulating the properties of the 

fuel dependents on computational models employed, and different modeling approaches can lead to different 

surrogate specifications; experimental confirmation of these surrogates is therefore necessary to ensure con-

sistency. Reaction Design’s Surrogate Blend Optimizer utilizes non-linear optimization algorithms to arrive 

at the surrogate mixture composition. This method was first described in [9] to construct a seven-component 

fuel blend for modeling gasoline. Several groups [10, 11, 12] utilize a computational approach by posing 

the determination of a surrogate composition as an optimization problem and utilizing both physical and 

chemical properties as CPTs. Aviation fuel surrogates have been derived using this approach of increasing 

palette sizes, with upto six-component surrogates being constructed [13]. However, common to all of these 

methods is the assumption of exact experimental fuel properties and a regression-based objective function 

that requires a weight for each CPT. This was improved upon more recently by Won et al. [14], by using 

experimental uncertainties to eliminate certain candidate mixtures formed as a result of discretization of 

the composition space. Each mixture is verified whether it indeed satisfies the constraints to the specified 

experimental thresholds, and is used to further narrow down the search space through a global search. Thus, 

there is a requirement for methods that incorporate and propagate experimental uncertainties to the final 

surrogate composition in a computationally efficient manner. This paper addresses this issue by providing 

a rigorous mathematical formulation for the surrogate representation problem along with methods to incor-

porate information on experimental uncertainty into the final surrogate description, which is shown to be 

necessary for reliable computational predictions. 

Physical property emulation is another subject that requires more investigation in the area of surrogate 

representation. Violi et al. [3] matched volatility of fuels along with other chemical properties relevant for 

ignition using experimental techniques. Certain computational approaches for physical property emulation 

include matching only evaporation [15, 16] and distillation characteristics [17, 18, 19]. Ahmed et al. [11] 

utilized a computational approach for constructing surrogate compositions by including both physical and 
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chemical properties. However, the use of experimental distillation curves based on the ASTM D86 standard 

[20] and advanced distillation curve methodology (ADC) [21], as the descriptor of physical fuel characteristics 

is questionable due to experimental uncertainties of this approach. Recent advancements in the distillation 

standard [22] are shown in this paper to offer a solution which is consistent with a computational approach 

and to provide a viable characterization for distillation. 

This paper primarily aims to quantify the effect of experimental uncertainty in the surrogate composition. 

The use of tools from optimization theory imparts rigor and helps quantifying bounds on compositions as a 

function of uncertainties. Certain experimental surrogate mixtures are utilized for benchmarks and provide 

a connection between the computational and experimental surrogate approaches. 

Table 1 summarizes the palettes of various jet fuel surrogates used in this paper. The compounds present 

in these palettes are specifically chosen to be representative of different classes of organic compounds [2], 

which include n-paraffins, iso-paraffins, cycloparaffins and aromatic compounds. This variation also offers 

a suitable benchmark for CPT evaluations since a purely computational approach is adopted in this paper. 

Both 4- and 5-compound surrogates are used to highlight the palette size independence of the approach that 

will be developed in this paper. Note that the surrogate in Violi et al. [3] differs from both Stanford A and 

B mixtures [23] only in composition. However, the procedure described is shown to capture the necessary 

details and distinguish them even when the differences are not immediate. The surrogate due to Dooley et 

al. [7] relies on higher aromatics and serves as an important benchmark for both the chemical mechanism [24] 

and physical property evaluations, which is performed based on the group contribution method [25]. This 

surrogate also represents a different fuel (Jet-A POSF 4658) and is utilized to demonstrate that the procedure 

developed in the present work is independent of the underlying fuel description. 
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The remainder of this paper is outlined as follows. The method used to incorporate physical properties 

and experimental uncertainties is described in detail in Section 2. First, a consistent approach to using 

distillation curves as a CPT is presented. Subsequently, the incorporation of experimental uncertainties in 

computational approaches to surrogate representations is discussed. The presented methodology is applied 

to the construction of jet fuel surrogates in Section 3, where limitations in current literature, such as the 

importance of a particular CPT and its connection to weighting factors in regression-based approaches 

is elaborated on. The effect of using simplified models for the CPT evaluation on the final surrogate 

composition is discussed in Section 3.3. A discussion on using more advanced optimization techniques to 

enable parametric studies on surrogates is presented in Section 4, along with relevant computational results. 

The paper finishes by summarizing the main contributions of this work and offering conclusions in Section 5. 

2. Methodology 

This section discusses in detail the methods aimed towards the problem of determining the surrogate 

composition under consideration of uncertainties that are introduced by experimental methods and com-

putational models. After reviewing relevant CPTs in Section 2.1, Section 2.2 deals with the necessity of 

incorporating experimental uncertainties into the description of the surrogate composition. Then, Section 2.3 

discusses methods that provide consistent descriptions of CPTs obtained through experiments and compu-

tations. The final subsection provides a detailed discussion of the surrogate representation problem under 

the framework of convex optimization and in turn, better quantifying the surrogate description of fuels. 

2.1. Consistent description of CPTs 

To specify the surrogate composition from the palette of compounds, a set of CPTs [2, 7] are prescribed 

to constrain fundamental molecular properties that manifest in the occurrence of combustion-related phe-

nomena. This approach has been used without specifically referring to them as CPTs in several previous 

studies [3, 8, 26]. CPTs can be broadly classified into physical and chemical target properties, with the 

former including molecular weight, H/C ratio and volatility, while ignition delay time (IDT) and threshold 

sooting index (TSI) are frequently used chemical target properties. 

Consistent descriptions between experiments and computations are desired for CPTs to provide a uni-

fied representation of surrogates obtained using experimental and computational approaches. The various 

approaches used to evaluate commonly used CPTs is presented as follows [2] 

• Molecular Weight: This property is directly evaluated using the composition; since it is a weighted 

average of individual molecular weights, this is a linear constraint on the mixture composition. 

• H/C ratio: This constraint can also be evaluated directly from the composition and is also a linear 

constraint, since it can be recast into a set of linear inequations. 
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• Threshold Sooting Index: The TSI is experimentally based on the maximum smoke-free laminar 

diffusion flame height and can be predicted through a group-contribution approach [27]. Since this 

method only involves a linear combination of coefficients, TSI is a linear constraint for computational 

purposes. 

• Ignition Delay Time: This is experimentally determined using a standardized ignition quality tester 

and the more relevant quantity of interest is the derived cetane number (DCN). DCN is expressed in 

non-dimensional units and varies inversely with the IDT [28]. The standard computational approach is 

to use a 0D-batch reactor simulation at specific conditions to evaluate this using a chemical mechanism. 

This mechanism is usually ensured to yield similar results between experiments and computations, but 

the margin of uncertainty is quite large. In the present work, the 451-species POLIMI mechanism is 

used to evaluate the ignition delay time from homogeneous ignition calculations [24, 29]. 
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Figure 1: Comparison between experimental ignition delay time for Jet-A [2] and JP-8 measured in [23] at 20 atm and φ = 1 

with computations performed using the 451-species POLIMI mechanism [24, 29] for the surrogates listed in Table 1 

Figure 1 presents the validation of the chemical mechanism against experimental data at 20 atm 

using a constant-volume batch reactor to calculate the auto-ignition delay time. Uncertainties in the 

shock tube measurements of around 15% [23] have been reported in the ignition delay time, but the 

computational predictions deviate to a larger extent and require incorporating a large error threshold 

to capture the experimental data. Thus, it is important that, given the current state of chemical 

mechanisms, a method to quantify uncertainty in surrogate descriptions must properly account for the 

specific error thresholds under consideration. 

Other computational approaches to evaluating IDTs involve either pressure-based empirical corrections 
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[30], palette-specific regression models [14] or linear mixing rules [12] that hold true only at DCN 

conditions. Given the restrictions of these approaches and the additional interpolation error, which 

can be incurred in them, this work uses the entire POLIMI mechanism for obtaining the ignition delay 

times. This is computationally tractable as the ignition delay time can be evaluated in parallel and a 

computational ignition delay time calculator which leverages this parallelism has been developed and 

is utilized in this work (see Supplementary Information). 

• Distillation Curve: The final CPT under consideration is the volatility of a fuel and is characterized 

using the distillation curve, which expresses the temperature as a function of the recovered mass frac-

tion. This is usually obtained experimentally using the ASTM D86 standard [20]. Shortcomings of 

this procedure are discussed in detail by Bruno et al. [31], involving systematic errors that depend 

on apparatus geometry and heating rate. To isolate fuel effects from these measurements, uncertainty 

bounds for the distillation curve were provided in [25]. This involves determining both flash and frac-

tional distillation limits, which represent either the limit of one or infinite vapor-liquid equilibrium 

interfaces, respectively. An experimental fractional distillation apparatus consists of a finite number of 

columns, with each corresponding to an equilibrium interface and hence, experimental results for frac-

tional distillation can be bounded between the computational flash and fractional limits. The ASTM 

D2887 standard [22] improves upon previous standards by maintaining the same oven and injection 

temperatures, thus minimizing transient effects. Hence, the notion of determining the distillation curve 

was imprecise until date, but recent improvements to the experimental standard have been found to 

eliminate these systematic errors. 

Figure 2(a) shows that ASTM D2887 results closely follow the fractional distillation bounds predicted 

using computations. This is not the case using the ASTM D86 standard, as can be observed in 

Figure 2(a). The ASTM D2887 standard offers a precise notion of determining the distillation curve 

and a formalism to incorporate physical properties in the surrogate representation procedure. The area 

between the experimental data and computed fractional distillation curve, shaded in gray, is chosen as 

the objective function, which, in the limit of the palette compounds matching the full fuel description, 

tends to zero and thus offers a consistent description in representing physical properties. 

Figure 2(b) highlights the fact that the fractional approach to distillation is in better agreement 

with the D2887 standard as compared to the existing approach for evaluating distillation-curve as 

a CPT, which involve bubble-point calculations in steps of evaporated volume and is referred to as 

the ‘step-volume’ approach in this paper. This method was initially discussed in [32] in the context 

of surrogate fuel construction and later adopted in [12] for constructing surrogates emulating both 

physical and chemical properties of conventional jet fuels. Figure 2(b) shows a comparison between 

the fractional distillation curve, step-volume approach and the D2887 standard for two-surrogate 

8 
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Figure 2: a) Distillation curve for POSF 4658 Jet-A experimentally measured using both D86 and D2887 standards. The flash 

and fractional bounds for the distillation curve are obtained using the procedure described in [25]. The area shaded in gray 

shows the difference between experimental D2887 curve and the computational fractional distillation b) Comparison between 

fractional distillation and step-volume approach [12, 32] against the experimental D2887 curve for Jet-A surrogates, POSF 

12765 and POSF 12785 [33] c) Fractional distillation curve for surrogates listed in Table 1 along with D2887 distillation data 

for the corresponding full fuel descriptions from [33] 

fuels, POSF 12765 and POSF 12785, which are two surrogates blended for the average Jet-A. These 

consist of 1,3,5-trimethylbenzene and iso-octane blended with either n-dodecane or n-hexadecane, 

thus closely resembling the palette for the POSF 4658 surrogate presented in Dooley et al. [7]. The 

fractional distillation approach captures both the length and height of the fractional distillation steps 

obtained using the ASTM D2887 standard. Although the step-volume approach was demonstrated 

to capture D86 standard distillation data for binary and ternary mixtures, the D2887 standard leads 
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to discontinuous distillation curves, which cannot be inherently captured using this method and thus, 

the fractional distillation method is advocated for eventual surrogate constructions. 

The fractional distillation curves and associated objective functions are evaluated using the method 

described in [25] and is presented in Figure 2(c) for the surrogates listed in Table 1. The step profile of 

the distillation curve is indicative of the boiling temperature of each species and its proportion in the 

surrogate mixture. Using this method, all four surrogates distinguish themselves through this CPT, 

which is based only on physical properties. 

2.2. Incorporating experimental uncertainties 

This subsection discusses the necessity of incorporating experimental uncertainties in the surrogate de-

scription of fuels. This is demonstrated through the variability due to ignition delay time errors in surrogate 

compositions. The ignition delay time is one of the combustion property targets used by Dooley et al. [7] 

and was introduced to account for the gas-phase kinetics of a fuel. Standard measurements for IDT involve 

uncertainties of the order of 15% [23], and reported experimental errors for DCN are less than unity [14]. 

Note that the ignition delay time obtained using computational techniques has a much larger uncertainty 

when compared with respect to the experimental data, and this has been highlighted in Figure 1. Most 

of all, the information on the error in CPTs has so far not been considered in existing methods to quan-

tify uncertainties in surrogate composition. Ahmed et al. [11] presented an optimization procedure where 

weighting factors are assigned to each CPT and a global minimum for the objective function is evaluated, 

which corresponds to the final surrogate composition. The target property is assumed to be a fixed value 

and does not take into account the experimental uncertainty of the underlying CPT. 

To assess the importance of this, simulations are performed, wherein the molecular weight and H/C 

ratio of the target fuel are matched exactly, similar to previous computational approaches [10] and then, the 

range of compositions corresponding to an IDT with at most 15% variation is evaluated. This is done for 

the surrogate presented in [3] and the Stanford A mixture in [23]. Note that this means three constraints 

are prescribed in the optimization problem, namely, molecular weight, H/C ratio and that the sum of 

mole fractions is unity. Thus, two degrees of freedom remain for a 5-compound palette and the range of 

compositions can now be depicted using a 2D plot. Other properties like TSI can also be included, but has 

not been chosen for this particular test case due to the fixed palette size and hence, the number of degrees 

of freedom. 

The nomenclature adopted for the relevant equations is that both vectors and matrices are denoted 

in bold-face, with vectors in small letters and matrices in capitals, in accordance with standard notation 

in optimization. Given that the mole fractions of the palette composition, with number of species Ns, 

are denoted by x = [x1, x2, . . . , xNs ]
T and m = [m1,m2, . . . ,mNs ]

T represents the molecular weights of 

each compound in the palette along with h = [nH,1, nH,2, . . . , nH,Ns ]
T and c = [nC,1, nC,2, . . . , nC,Ns ]

T 
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representing the number of hydrogen and carbon atoms in each compound respectively, the feasibility region 

can be defined implicitly through a feasibility problem, or in other words, an optimization problem [11] with 

an irrelevant objective function, and hence assumed fixed. This feasibility problem can be formally written 

as 
minimize f(x) = 1 

x 

NsX 
subject to xi = 1 

i=1 (1) 
T m x = tMW 

hT x 
cT x 

= tHC 

(a) JP-8 Surrogate from [3] (b) JP-8 Surrogate from [23] 

Figure 3: Contour plot of IDT deviation from experimental value at DCN conditions (p0 = 22.4 bar and T0 = 833 K) for 

surrogate compositions, which satisfy the respective given molecular weight and H/C ratio, as presented in [3] and Stanford 

A [23] for JP-8, also listed in Table 1. Note that the remaining components are not held constant but satisfy the constraints. 

The proposed experimental surrogate composition is marked by the red symbol 

Figure 3 shows a map of the ignition delay times evaluated for the two surrogate compositions proposed 

in [3] and [23] for JP-8. Note that the three prescribed constraints are sufficient to narrow down the 

possible surrogate compositions to a set where the ignition delay times are indistinguishable within the 

experimental uncertainty of 15%. Even in the case of Figure 3(b), a major portion of the feasible region is 

indistinguishable and the prescribed constraints can be interpreted as leading to non-unique solutions to the 

surrogate optimization problem. This inspires an optimization formulation where constraints are not exact, 

but take into account uncertainties that are imposed from variations, among and between, experiments and 

computations. 
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2.3. Convex optimization approach to surrogate representation 

This subsection presents formal procedures to incorporate experimental uncertainties into the description 

of surrogates through the use of tools from convex optimization. This procedure ensures convergence to the 

optimal, places no restrictions on the search space due to computational limitations and avoids the use of 

weighting factors. The error thresholds for CPTs serve as parameters for the optimization problem. The 

CPTs only specify constraints and thus, narrow down the search space for the surrogate composition. The 

key to efficiently incorporating uncertainty is through the use of an appropriate objective function and this 

section discusses how different objective functions can be used to provide concise descriptions of the search 

space. 

Given that experimental uncertainties are described using tolerances centered at the reported value, a 

natural description of uncertainty in the surrogate composition would be through the use of a tolerance 

radius, centered at each mole fraction contained in the composition of a particular surrogate. The choice 

now lies between whether this range of compositions either inscribes or circumscribes the search space. 
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Figure 4: Illustration of the feasible region (in red) being inscribed (in black) and circumscribed (in blue) by hypercuboids 

Figure 4 illustrates how the feasible region can be approximately described using inner and outer hyper-

cuboids. The experimental composition, shown using the red triangle, need not necessarily lie within the 

inner hypercuboid, but must do so within the outer hypercuboid, as will be discussed in detail later in this 

section. The aim of characterizing the surrogate search space using this simplistic description is shown to 

also provide information regarding the importance of a particular compound in the palette and a measure 

of robustness for a particular surrogate description. Geometrically, a surrogate can be viewed as a point in 

a high-dimensional space, with the number of dimensions corresponding to the palette size. The problem 

of assigning tolerances to the surrogate composition corresponds to assigning a lower and upper bound for 

each palette compound. This can be viewed as finding an outer bounding box, or, more precisely, an outer 

bounding hypercuboid for the feasible region. Thus, outer tolerances represent the extreme limits of each 
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compound in the palette and that there is at least one feasible surrogate composition where these values 

are attained. Similarly, an inner bounding hypercuboid represents the largest tolerances that lie completely 

within the feasible region. This problem is tractable when the search space is a convex polytope and in the 

case of CPTs, which are linear, this is indeed the case. In case of nonlinear CPTs, examples of which include 

ignition delay time and error in distillation curve prediction, the convex hull based on feasible points can 

provide an accurate approximation to an arbitrary accuracy, if it is a convex constraint. For these particular 

properties, numerical evidence, shown in Figures 3 and 5, indicates that the sub-level sets, or in other words, 

regions with values less than a particular number, are indeed convex and hence the constraints themselves 

are convex [34, pg. 139]. Note that since each compound in the surrogate composition is characterized by a 

particular dimension, the desired hypercuboids must be aligned with the coordinate axes for the tolerances 

to correspond to compounds in the palette, which limits the accuracy of this description. However, if one 

is willing to carry the information of a transformation matrix instead of just tolerances, a more accurate 

description of the search space can be provided using other geometric objects and this will be discussed 

further in Section 2.3.2. 

The constraints arising from CPTs on inclusion of experimental uncertainties become inequalities. Using 

the same notation as Eq. (1), the constraints can be summarized as 

z(x; �MW , �HC , �j ) := minimize 
x 

f(x) 

NsX 
subject to xi = 1 

i=1 

− �MW 
T≤ m x − tM W ≤ �MW 

(2) 

hT x − �HC ≤ 
cT x 

− tHC ≤ �HC 

Fj (x) ∈ Sj (�j ) j = 1, 2, . . . , Nnl 

where f stands for the objective function of choice, which is required to be a convex function. Appropriate 

choices for the objective function will be discussed in detail in Sections 2.3.1 and 2.3.2. Nonlinear CPTs, 

examples of which include the error norms on distillation curve or ignition delay time, are represented by 

Fj (x). Also, �j represents the uncertainty for the jth nonlinear property target, which in turn determines 

the corresponding feasible region Sj , with j = 1, 2, . . . , Nnl, where Nnl denotes the number of nonlinear 

constraints. Demarcating the region of interest can be simplified by evaluating the nonlinear constraint 

only in the feasible regions formed by the constraints in sequence. As an example, consider the problem for 

�MW , �HC = 0, with the distillation curve error given by Z 1 

kT (β) − Texp(β)k1 = |T (β) − Texp(β)| dβ (3) 
0 

Equation (3) serves as the sole nonlinear constraint in this illustrative example. This characterization 

of the distillation curve is appropriate as this CPT contains a series of measurements, or simply put, a 
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vector-valued function. Since a CPT error is required to be characterized by one scalar, a norm is chosen to 

map this vector to a scalar, and it is a well-known fact that discrete norms are equivalent to one another, 

thus making the choice of a particular norm irrelevant. Thus, the integral of the `1-norm is chosen as it 

is intuitive and corresponds to the area between the experimental and computational distillation curves. 

The common approach to distillation curve error involves using only one temperature point, namely, the 

bubble point of the surrogate composition, is not advisable as the fuel vapor in practical settings is formed 

at various droplet temperatures as time proceeds and the whole curve is required to capture fuel behavior. 

Given the distillation curves, the problem of evaluating the distillation curve error is equivalent to Eq. (1), 

but with one nonlinear constraint, namely, the error between computational and ASTM D2887 distillation 

curve. Thus, based on the suggestion for demarcating the region of interest, the ignition delay time only 

needs to be evaluated in the feasible region given by Eq. (1). This has been applied to the problem framed 

for the two surrogate compositions shown in Figure 3. 

(a) JP-8 Surrogate from [3] (b) JP-8 Surrogate from [23] 

Figure 5: Contour plot of the `1-norm for error between computational and ASTM D2887 distillation curve for surrogate 

compositions, which exactly satisfy (�MW , �HC = 0) the respective target molecular weight and H/C ratio for 2 of the 5 palette 

compounds, as presented in [3] and Stanford A mixture in [23] for JP-8. Note that the remaining components are not held 

constant but satisfy the constraints. The proposed experimental surrogate composition is marked by the red symbol 

Note that the optimization problem has to be solved again whenever a different �j is utilized. However, 

if �j,1 > �j,2, then the corresponding feasible spaces Sj,1 and Sj,2 are related by Sj,2 ⊂ Sj,1, which essentially 

captures the fact that compositions within a certain tolerance also lie within a higher tolerance. Thus, a 

conservatively large value for �j,1 could be chosen to determine the quantity of interest for an appropriately-

sized search space so that the constraint function does not require repeated evaluation. This is especially 

useful when the constraint function evaluation is an expensive computation, which is definitely true in 
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the case of ignition delay time using large chemical mechanisms. The surrogate representation problem, 

presented in Eq. (2), can also be expressed in terms of relative errors using the simple transformation 

�0 = �k/tk, for any constraint index k. This does not lead to any change in the approach used to solve thek 

optimization problem as linearity is still preserved. The resulting problem is stated using relative tolerances 

as follows, and is the convention for the remainder of this paper. 

z(x; �0 MW , �
0 
HC , �

0 
j ) := minimize 

x 
f(x) 

NsX 
subject to xi = 1 

i=1 

TtMW (1 − �0 x ≤ tMW (1 + �0 MW ) ≤ m MW ) 
(4) 

hT x 
tHC (1 − �0 ≤ tHC (1 + �0 HC ) ≤ HC ) cT x 

Fj (x) ∈ Sj (�
0 
j ) 

Figure 5 shows a map of the error between computational and ASTM D2887 distillation curve for the two 

surrogate compositions proposed in [3] and [23] for JP-8, using the idea of reducing constraints in sequence 

before evaluating nonlinear constraints. It is important to note that the errors are high in magnitude, given 

that the surrogate composition distillation curve is based on at most five degrees of freedom in this case. The 

full composition is verified, in Figure 2a to give an error of less than 1 K for each of the distillation points. 

Note that the absolute magnitude of the distillation curve error is not relevant and in fact, depends on the 

temperature interval over which the distillation experiment is carried out. Also, the proposed experimental 

surrogate compositions clearly do not lie in the region of minimum error, which motivates the inclusion of 

physical properties in the surrogate description. It is useful to note that, since every constraint is being 

represented using convex polytopes, as justified in the beginning of this section, the search space can be 

concisely represented as Ax ≤ b, for some A and b, which only depend on the CPTs and the palette 

compounds. This is also evident in Figures 3 and 5, where the feasible region is given by polytopes. The 

objectives of the next sections are to give a concise description of surrogates along with error bounds. Two 

particular options are of interest, namely, representation using hypercuboids and hyperellipsoids. 

2.3.1. Representation of search space using hypercuboids 

The representation of the surrogate formulation using a convex polytope is, however, not amenable to 

a concise description, which is required when reporting the composition of a surrogate. A more natural 

description, as presented in Section 2.2, is using a tolerance radius and this translates to bounds which are 

hypercuboids in composition space. Once the constraints from CPTs have been represented as a convex 

polytope, the problem of finding the inner and outer hypercuboids can be written as a convex optimization 

problem. This is where an appropriate objective function has to be utilized and details regarding the 
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optimization problem and its numerics are presented in Appendix A.1. 

As an example for illustrative purposes, only the linear constraints, namely molecular weight and H/C 

ratio, from Eq. (4) are used on the Jet-A POSF 4658 surrogate given by Dooley et al. [7]. Note that TSI is 

also a linear constraint and is used later in this work. The relative error thresholds have been set to 0.05 for 

molecular weight, which corresponds to around 6g/mol, and 0.005 in the case of H/C ratio, as its average 

value is around 2 and a variation of 0.01 is reported [14]. 

Figure 6: Feasible region (in red outline) from linear constraints in Eq. (4) along with inner (in yellow) and outer (in blue outline) 

hypercuboids for the 4-compound Jet-A surrogate in [7] corresponding to the three degrees of freedom for mole fractions. The 

error thresholds for molecular weight �0 = 0.05 and �0 = 0.005 based on uncertainties reported in [14]. The red triangleMW HC 

depicts the proposed experimental composition 

Figure 6 provides a visualization in composition space of the various constraints imposed in the optimiza-

tion procedure. Note that the surrogate depictions involve one dimension less than the number of palette 

compounds as the mole fraction of the final compound is enforced using the sum constraint. Thus, a 3D 

visualization is possible in the case of this surrogate mixture as the palette consists of four compounds. 

Larger palette sizes must be visualized using projections, preferably pairwise and hence, in two dimensions. 

The polyhedron in Figure 6 corresponds to the feasible region demarcated by the molecular weight and 

H/C ratio constraints. The inner (in yellow) and outer hypercuboid (in blue outline) are obtained from the 

solution of a series of optimization problems presented in Appendix A.1. 

A physical interpretation of these characterizations is that the inner hypercuboid represents a sufficient 

estimate of the uncertainty, in that, every composition within it definitely satisfies the CPTs. Note that 

the corresponding experimental surrogate compositions need not be contained in this region. The outer 

hypercuboid is more conservative and can be interpreted as a necessary estimate of the uncertainties, or in 
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other words, compositions satisfying all the constraints must at least lie within the outer hypercuboid. The 

fact that both inner and outer hypercuboid are required for containing the experimental composition is to 

be noted as it can lie outside the inner hypercuboid but must lie within the outer hypercuboid, given that it 

satisfies the constraints. In addition, the experimental composition lying within the feasible region obtained 

using computations is deemed as a ‘consistent’ surrogate as there are both experimental and computational 

results predicting a composition that satisfies the CPTs. This is trivial in the case of CPTs that can 

be evaluated in the form of linear constraints like molecular weight and H/C ratio, but would serve as a 

benchmark when other nonlinear constraints are included, as will be shown in Section 3. 

Other geometrical objects that also result from solutions of convex optimization problems can be used 

for describing the search space and are discussed in the next section. 

2.3.2. Representation of search space using hyperellipsoids 

The tolerances could alternatively be interpreted as the semi-axis lengths of hyperellipsoids thus leading 

to the question of whether a hyperellipsoid would make a better descriptor of the search space. Hyper-

ellipsoids can be described as images of unit hyperspheres, given by kwk2 ≤ 1, under invertible linear 

transformations Bw + x; in symbolic form, a particular hyperellipsoid E can be represented as [34, pg. 30] 

E = {Bw + x such that kwk ≤ 1} (5)2 

Note that B can be assumed, without loss of generality, to be a positive-definite matrix, as it results only 

from the stretching and rotation of the principal axes. Further details regarding the bounding ellipsoids 

and their construction are presented in Appendix A.2. The problem of constructing hyperellipsoids not just 

involves a different objective function, but is numerically distinct from the construction of hypercuboids, as it 

is an example of a semi-definite program (SDP), where the constraints involve semi-definite variables. These 

problems require specific solvers [35, 36]. However, this additional effort leads to better approximations of the 

search space as it at least captures the axis-aligned hyperellipsoid if it is indeed the maximum-volume case. 

However, the search space must now be described using not just the center of the ellipsoid, or in other words, 

the candidate composition x, but also the transformation matrix B. The axis-aligned hyperellipsoid does 

not require this additional matrix for its description and can also be obtained using a more straightforward 

optimization problem; the details of which are presented in Appendix A.2. Note that the same approach 

used for axis-aligned hyperellipsoids can be used for the more general case of an arbitrary convex geometric 

object. The largest scaling factor can be calculated such that it can be embedded entirely within the search 

space using optimization techniques. This is more commonly referred to as the diamond cutting problem 

[37] and it is important to distinguish it from the problems discussed in this section as the aspect ratio and 

orientation are fixed by the prescription of the object. 
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To illustrate the ellipsoid calculations, the axis-aligned and maximum volume hyperellipsoid are con-

structed for the Jet-A surrogate in [7] using only molecular weight and H/C ratio. The visualizations have 

been generated using the Ellipsoidal Toolbox for MATLAB [38]. 

Figure 7: Feasible region (in red outline) from linear constraints in Eq. (4) along with axis-aligned (in blue) and maximum-

volume (in yellow) hyperellipsoids for the 4-compound Jet-A surrogate in [7] corresponding to the three degrees of freedom for 

mole fractions. The error thresholds for molecular weight �0 = 0.05 and �0 = 0.005 based on uncertainties reported inMW HC 

[14]. The red triangle depicts the proposed experimental composition 

Figure 7 depicts the axis-aligned (in blue) and maximum-volume hyperellipsoid (in yellow), along with the 

experimental composition. Note that alignment with the axes severely restricts the proportion of the feasible 

region which is captured. The maximum-volume hyperellipsoid contains the experimental composition 

within itself and is true even for the feasible region (in red outline). Thus, consistency between experimental 

and surrogate compositions is noted even when hyperellipsoids are used to characterize this mixture. The 

orientation of the maximum-volume ellipsoid with respect to the coordinate axes is evident and allows to 

capture a larger volume of the feasible region. 

3. Applications 

This section utilizes the methods described in Section 2 to construct and verify surrogate compositions 

using both physical and chemical properties. This primarily involves extending the usage to non-linear 

constraints, which is done by constructing a map of the non-linear function in the feasible region and 

approximating its boundary using a convex hull. It is obvious that one could come up with a nonlinear 

function which leads to feasible regions that are non-convex sets. The present study deals with ignition 

delay time and the error norm of the distillation curve, which are shown through numerical evidence, 

already presented in Figures 3 and 5, to be representable using convex sets and thus form the sole non-linear 

constraints for the subject of this discussion. The information of experimental uncertainty is incorporated 
18 



θθ

into candidate surrogate compositions and is summarized as tolerances for proposed mole fractions. The 

section concludes with a discussion on the importance of particular CPTs and their relation to weighting 

factors in regression-based approaches for surrogate representations [10, 11]. 

It is important to remember that two distinct notions of surrogates exist in literature, namely exper-

imental and computational surrogates, which are based on disconnected approaches. The former involves 

evaluating CPTs only using experimental approaches, while the latter predominantly utilizes computational 

models of varying fidelity to evaluate them and particularly, for the step to determine the optimal surro-

gate composition. The primary contribution of this study and also the focus of this section, is to ensure a 

consistent description of these notions of surrogates by providing bounds for surrogate compositions that 

are determined through computations and verifying if the experimental composition also lies within these 

limits. This geometrically corresponds to the experimental surrogate composition to be required to lie in the 

interior of the hypercuboids or hyperellipsoids determined using the computational approach. Examining 

this aspect is the subject of discussion in the following subsection. 

3.1. Error tolerances of sample surrogate 

The full optimization problem includes the use of TSI calculated using a mixture-averaged rule as a linear 

group-contribution approach [27], which was shown to be successful in predicting experimental values. The 

pure-compound TSI values are written as θ = [θ1, θ2, . . . , θNs ]
T . In addition, two nonlinear properties, 

namely ignition delay time and the distillation curve error, defined in Section 2.3, are also utilized. The 

ignition delay times are first evaluated over a discrete set of surrogate compositions, with a resolution of 50 

points along each dimension of the surrogate composition vector in the outer hypercuboid region using the 

reduction discussed in Section 2.3. This amounts to around 50,000 test compositions for the four mixtures 

listed in Table 1, whose ignition delay time is to be evaluated using the full mechanism. The ignition delay 

time computations were performed in parallel using 768 processors and required under five hours. The 

convex hull of the resultant points is constructed and forms the feasible region of interest. The objective 

function f is selected based on the geometric object (details of which are provided in Appendix A) used 

to describe the points in the feasible region. This is chosen to be the volume for both inner hypercuboids 

and maximal-volume hyperellipsoids. The outer hypercuboid is constructed using the coordinates in each 

dimension as the objective function to be either minimized or maximized. Axis-aligned hypercuboids are 

constructed by obtaining the maximum scaling factor. Details regarding the numerics are also presented in 
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Appendix A. The full optimization problem can be summarized as 

z(x; �0 , �0 , �0 , �0 , �0 ) :=MW HC T SI IDT DC min f(x) 
x 

NsX 
subject to xi = 1 

i=1 

tMW (1 − �0 )MW 
T≤ m x ≤ tMW (1 + �0 )MW 

tHC (1 − �0 )HC ≤ 
hT x 
cT x 

≤ tHC (1 + �0 HC ) 
(6) 

tT SI (1 − �0 )T SI ≤ θT x ≤ tT SI (1 + �0 )T SI 

tDC (1− �0 (β)kDC ) ≤ kT (β) − Texp 1 ≤ tDC (1 + �0 )DC 

tIDT (1− �0 (x; p0, T0, φ) ≤ tIDT (1 + �0 )IDT ) ≤ τIDTcomp IDT 

The error thresholds have been chosen based on experimental uncertainties presented in literature. Won 

et al. [14] report conservative estimates for uncertainties of various CPTs. The distillation curve error is 

calculated based on the fact that the error observed in [14] is around 1 K. Also, noting that the average 

values of distillation curve error shown in Figure 5, is around 80 K, a value of �0 = 0.0125 is utilized.DC 

Other thresholds used in this section are summarized in the following table 

CPT Average Value Experimental Error Threshold 

Molecular Weight 

H/C Ratio 

Threshold Sooting Index 

Ignition Delay 

Distillation Curve Error 

120 (g/mol) 

2 

25 

50 

80 (K) 

6 (g/mol) 

0.01 

1 

1 

1 (K) 

0.05 

0.005 

0.04 

0.02 

0.0125 

Table 2: Relative error thresholds used for quantifying uncertainty in surrogate descriptions based on experimental uncertainties 

reported in Won et al. [14] 

Note that the prescribed error thresholds are bound to change with improvements in experimental techniques 

and this paper primarily demonstrates the method of uncertainty quantification, which does not explicitly 

depend on the error thresholds. 

The ignition delay time, which varies inversely with DCN is chosen as a constraint because the correlations 

used for converting to DCN are fuel-dependent, and to isolate its effect from the uncertainty evaluation. 

For the same reason, simulations of the ignition delay time are performed at DCN conditions and they 

correspond to a stoichiometric mixture undergoing ignition at p0 = 22.4 bar and T0 = 833 K. It is noted 

that the current method enables the consideration of different target conditions and combustion properties. 

The computational ignition delay time at the experimental composition was chosen as the representative 

tIDT for comparison as this offers a fair benchmark and does not include mechanism errors in it, given 
20 



that both comparative and representative values are calculated using the same chemical mechanism. This 

is clearly seen in Figure 1, where a large error, of up to an order of magnitude, is required to encompass the 

experimental ignition delay times while centered at the computationally predicted values, especially in the 

predicted negative temperature coefficient (NTC) region. Thus, the ignition delay time at the experimental 

surrogate composition is being used for calibrating computational ignition delay times. This can be equally 

performed with any other composition and thus allows for usage of this method even in situations where 

there is no available information on the surrogate apart from the list of compounds in the palette. This step 

is essential when the underlying computational models cannot match the experimental values as the specified 

target of a real fuel might not be achievable using any composition. Alternatively, one might suggest that 

the computational composition which provides the closest approximation to the target be utilized. This 

alternative approach is not applicable when multiple CPTs do not have a consistent description as the 

compositions which best approximate for one property need not do so for another, thus not leading to 

a feasible solution. Also, information on uncertainty cannot be utilized as the composition which best 

approximates is usually a single composition because the problem then simplifies to finding the maximum or 

minimum CPT in the feasible region, depending on whether the target exceeds or is lower than all possible 

computational values for the CPT. 

Since the primary focus of this study is the characterization of sensitivities, it is necessary to use consistent 

measurements given the strong dependence of ignition delay time on the method of measurement. In any 

case, this paper presents a generalized approach to this characterization and the method as such, remains 

robust irrespective of the procedure used to evaluate constraints. The objective function is chosen based on 

the geometric object under consideration, as described in detail in Appendix A. 

The distillation curve error norm is obtained using the computed fractional distillation curve and the 

full fuel measurement based on the D2887 standard. This was already verified in Section 2.1 to provide 

a consistent basis for a constraint estimate and thus enables a physical CPT evaluation for any candidate 

composition. This is essential for computational surrogate characterizations as every optimization procedure 

requires the ability to evaluate constraints for any proposed composition. The target value for the distillation 

curve error is chosen to be the value obtained on performing the calculation using the experimental surrogate 

composition. 

The first application uses the surrogate mixture described in [7] for Jet-A using four compounds. Note 

that projections have been used to present this surrogate as well even though a 3D representation, similar to 

Figures 6 and 7, depicts all degrees of freedom. Information regarding the experimental composition being 

present in the interior of the calculated regions is crucial to determining the consistency of a surrogate and 

this can be decisively conveyed only through 2D images on paper. Both hypercuboid and hyperellipsoid 

characterizations are presented for completeness and is repeated for all surrogates listed in Table 1. 
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Figure 8: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with 

axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 4-compound Jet-A surrogate in [7], also listed 

in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental 

composition 

Figure 8 presents various characterizations for the 4-compound Jet-A surrogate [7]. It is important to 

remember that the area of the feasible region in the projection can be vastly larger compared to the size of 

a cross-section. However, all inscribed and circumscribed geometrical objects remain similarly confined also 

in the projections. The minimal requirement for a consistent surrogate description between experiments 

and computations is that the experimental surrogate composition lies completely within the feasible region 

(in red). Figure 8 shows that the experimental composition is within the feasible region even when the 

D2887-based distillation curve error, an example of a CPT that was not considered during experiments, 

is utilized as well. The inner hypercuboid and axis-aligned hyperellipsoid present a rigid estimate of the 

error threshold in composition space, and it would be the hallmark of an experimental surrogate to lie 

completely within those prescribed computational bounds. Note that the maximal-volume hyperellipsoid 

is the most successful in capturing the shape and volume of the feasible region, but requires additional 

information regarding axes orientation. Also, the outer hypercuboid demarcates extremes in mole fractions 

and is a better representation of the feasible region, especially in the case where its range is narrow in a 

particular dimension and the inscribed geometrical figures occupy only a small fraction of the feasible region, 

for instance, the projection onto iso-octane and n-propylbenzene axes. 

22 



Figure 9: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with 

axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate in [3], also listed 

in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental 

composition 

Figure 9 shows the results for the JP-8 surrogate presented in [3] and illustrates the method for a different 

fuel. There is agreement between experimental and computational surrogate descriptions as the experimental 

composition always lies within the feasible region (in red) demarcated by CPTs and in fact, within the 

maximal volume hyperellipsoid. The number of projections increases as there are now five compounds in 

the palette and in fact, the number of projections given the palette size Ns is equal to (Ns − 1)(Ns − 2)/2. 

Note that the inner hypercuboid and hyperellipsoid is primarily restricted by Benzene and Toluene. Also, 

the inner geometric objects provide rigid limits to the composition given the uncertainty and are well within 

the interior of the feasible region. 
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Figure 10: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with 

axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate (Stanford A) in 

[23], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed 

experimental composition 

The JP-8 surrogates presented in [23] form the remaining part of the discussion in this subsection. 

Figure 10 shows that there is agreement with the experimental and computational surrogate descriptions as 

the experimental composition always lies within the feasible region demarcated by CPTs. Also, the maximal 

volume hyperellipsoid captures the experimental composition. Similar to the JP-8 surrogate of [3], the inner 

hypercuboid and hyperellipsoid are primarily restricted by Benzene and Toluene. 
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Figure 11: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with 

axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate (Stanford B) in 

[23], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed 

experimental composition 

Figure 11 further confirms that the method developed in this work distinguishes surrogates with the same 

palette compounds but with slightly different compositions, as can be seen by comparing Figures 10 and 11. 

The bottleneck for the inner geometric description is once again evident in the Benzene-Toluene pair. 

An important advantage of using hypercuboids to describe the surrogate composition is that another 

candidate can be readily evaluated to be lying within the inner hypercuboid region by just checking the 

individual coordinates. This is not the case with the hyperellipsoid, where one has to evaluate (x0 − 

0x)T (BBT )−1(x0 − x) ≤ 1 to verify if the composition x indeed lies within a hyperellipsoid centered at 

x and the eigenvalues of Q = BBT yield the principal axes lengths. The maximum-volume ellipsoid has 

an accompanying full matrix for Q, which needs to be provided as part of the surrogate description and 

can be cumbersome. However, this is a trade-off in favor of higher packing fractions of the search space 

and consistent capturing of the proposed experimental compositions is a decision to be made based on 

requirements. 

In summary, the surrogate descriptions for the four candidate fuel mixtures is presented along with the 

bounds based on error thresholds in Table 2. Thus, all four surrogate descriptions presented in Table 1 can 

be deemed as consistent given the CPTs under consideration, which include both physical and chemical 
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properties. The consistent nature of the surrogates under consideration is quite a coincidence because 

different methodologies have been used to obtain the CPTs and also, the property targets differed between 

the experimental studies. It also motivates the question of importance of a particular CPT, since the 

addition of certain CPTs has not violated the existing surrogate descriptions. This question is certainly of 

importance and is discussed in detail in the next section. 

Name Compound Experiment Inner Hypercuboid Outer Hypercuboid 

Dooley et al. [7] n-Propylbenzene 0.228 0.236 ± 0.004 0.224 ± 0.051 

n-Dodecane 0.404 0.401 ± 0.006 0.399 ± 0.026 

iso-Octane 0.295 0.296 ± 0.002 0.304 ± 0.025 

Trimethylbenzene 0.073 (*) (*) 

Violi et al. [3] Methylcyclohexane 0.1 0.047 ± 0.018 0.070 ± 0.070 

Toluene 0.1 0.040 ± 0.003 0.057 ± 0.057 

Benzene 0.01 0.082 ± 0.004 0.070 ± 0.070 

iso-Octane 0.090 0.090 ± 0.065 0.108 ± 0.091 

n-Dodecane 0.735 (*) (*) 

Stanford A [23] Methylcyclohexane 0.1 0.041 ± 0.018 0.094 ± 0.094 

Toluene 0.1 0.056 ± 0.003 0.056 ± 0.056 

Benzene 0.01 0.068 ± 0.003 0.074 ± 0.074 

iso-Octane 0.25 0.293 ± 0.046 0.275 ± 0.118 

n-Dodecane 0.54 (*) (*) 

Stanford B [23] Methylcyclohexane 0.1 0.056 ± 0.010 0.078 ± 0.078 

Toluene 0.295 0.265 ± 0.002 0.216 ± 0.103 

Benzene 0.01 0.050 ± 0.002 0.112 ± 0.112 

iso-Octane 0.055 0.083 ± 0.036 0.089 ± 0.073 

n-Dodecane 0.54 (*) (*) 

Table 3: Summary of experimental surrogate composition and its hypercuboidal characterization using error thresholds pre-

sented in Table 2 for molecular weight, H/C ratio, TSI, distillation curve error and ignition delay time at DCN conditions 

for the jet fuel surrogates proposed in [3, 7, 23]. The last species is obtained from enforcing total species conservation and is 

denoted by (*) 

Tables 3 and 4 provide a summary of results obtained for the four surrogate mixtures considered here; 

xAA and xMV denote the centers of axis-aligned and maximum-volume hyperellipsoid, respectively. The 

calculated centers of all inscribed objects, or in other words, the surrogate compositions corresponding to 

the centers of the inner hypercuboid, axis-aligned hyperellipsoid and maximum-volume hyperellipsoid are 

indeed verified to satisfy the target properties. This is a direct consequence of the construction procedure 
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Name Compound xAA xMV ⎤Transformation Matrix (Q1/2)⎡ 
Dooley et al. [7] n-propylbenzene 

n-Dodecane 

iso-Octane 

Trimethylbenzene 

0.236 ± 0.006 

0.397 ± 0.003 

0.296 ± 0.003 

(*) 

0.234 

0.400 

0.297 

(*) ⎤ 

⎥⎥⎥⎦ 

0.027 0.009 −0.011 

0.012 −0.005 

0.009 

⎢⎢⎢⎣ 

⎡ 
Violi et al. [3] Methylcyclohexane 

Toluene 

Benzene 

iso-Octane 

n-Dodecane 

0.067 ± 0.011 

0.070 ± 0.009 

0.047 ± 0.011 

0.075 ± 0.014 

(*) 

0.058 

0.055 

0.066 

0.094 

(*) 

⎥⎥⎥⎥⎥⎥⎦ 

⎤ 

0.050 0.010 −0.015 −0.006⎢⎢⎢⎢⎢⎢⎣ 

⎡ 

0.039 −0.037 −0.000 

0.053 0.001 

0.077 

Stanford A [23] Methylcyclohexane 

Toluene 

Benzene 

iso-Octane 

n-Dodecane 

0.036 ± 0.013 

0.047 ± 0.008 

0.076 ± 0.010 

0.260 ± 0.016 

(*) 

0.056 

0.057 

0.064 

0.288 

(*) 

⎥⎥⎥⎥⎥⎥⎦ 

⎤ 

⎢⎢⎢⎢⎢⎢⎣ 

⎡ 

0.051 0.009 −0.014 −0.012 

0.038 −0.036 −0.003 

0.050 0.004 

0.073 

Stanford B [23] Methylcyclohexane 

Toluene 

Benzene 

iso-Octane 

n-Dodecane 

0.033 ± 0.005 

0.237 ± 0.007 

0.084 ± 0.008 

0.084 ± 0.005 

(*) 

0.055 

0.240 

0.075 

0.078 

(*) 

⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎣ 

0.048 0.008 −0.015 −0.004 

0.048 −0.045 0.002 

0.057 −0.005 

0.061 

Table 4: Summary of hyperellipsoidal characterizations using error thresholds presented in Table 2 for the jet fuel surrogates 

proposed in [3, 7, 23]. xAA and xMV correspond to axis-aligned (AA) and maximum-volume (MV) centers respectively. The 

last species is obtained from enforcing total species conservation and is denoted by (*) 

as the center lies in the feasible region, given that the geometric objects are inscribed within it. Further 

details regarding the verification of computational surrogates is presented in Appendix B. 

In the context of numerics, it is important to note that the transformation matrix is always symmetric, 

given that it is obtained by solving a semi-definite program, presented in Eq. (14), where it is required that 

B is positive-definite. The ellipsoid matrix Q, as previously described in this section, is given by BBT . 

Since B is symmetric (positive-definite), it follows that B can be equally represented using Q1/2 as the 

Cholesky decomposition Q = BBT is unique for symmetric matrices. 

The runtime to generate the table of results is of the order of a few seconds, given the ignition delay time 

maps, which are obtained as discussed in Section 2.3. The IDT maps are generated for a larger threshold 

(than 0.02 in this case) so that the optimization routines for a different threshold can be repeated without 
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additional overhead. The following sections discuss the utility of this approach in providing information 

regarding the importance of a particular CPT and its connection to weighting factors. 

3.2. Importance of particular CPTs 

Previous computational approaches [10, 11] framed the problem of surrogate representation using a scalar 

objective function despite it being a vector optimization problem, where errors between multiple properties 

need to be minimized. This is a standard technique in optimization theory and is called scalarization, 

which is used to find the Pareto optimal of a given vector optimization problem. The problem of surrogate 

representation falls under the specific category of multicriterion optimization, where the components of the 

vector objective are comprised of scalar functions Fi(x) corresponding to the constraints. 

It is useful to define that a point x is ‘better’ than y if Fi(x) ≤ Fi(y) for all i, as it simplifies the concept 

of a Pareto optimal point, which is defined as a point for which no other feasible point is better than it. 

Thus, there can be a set of points called the Pareto surface, which solely consist of Pareto optimal points. 

When this surface is just one point, it is called the optimal and coincides with the notion of optimal for 

a vector optimization problem. Further details regarding these concepts are well-described and illustrated 

in [34, pg. 174-180]. One important result is that any arbitrary positive weighting factor will result in a 

Pareto-optimal for the surrogate representation problem if the final scalar problem can be exactly solved. 

The design of appropriate weighting factors is necessary only to carefully explore the Pareto surface. It is 

important to remember that these weighting factors are exactly the essence of duality and the remainder of 

this section will provide a more formal basis for existing techniques to determine importance factors through 

this connection. 

The objective function of the regression model used in [10, 11] is precisely the Lagrangian dual function 

of the optimization problem in Eq. (6), with error thresholds set exactly to zero, since the experimental 

properties are assumed to be exact. The weighting factors are the dual variables associated with the 

original, or in other words, primal problem. The Lagrange dual function only gives a lower bound on the 

optimal of the primal problem. A natural question is then to find the optimal weighting factors so that 

the best lower bound is obtained. Thus, the problem of determining the most appropriate weighting factors 

is equivalent to solving the dual problem for Eq. (6). The difference between the optimal for the primal 

and dual problem is referred to as the duality gap and this is zero only under special conditions, which are 

referred to as constraint qualifications. Several results regarding this exist in the literature and are discussed 

in detail for nonlinear constraints in [39]. Thus, claims of optimal computational surrogate compositions 

arrived using the weighting factor approach, even in the ideal situation of having the best weighting factors, 

must be made only when constraint qualification can be rigorously proved for each of the CPTs. Adding 

to the list of shortcomings for existing computational approaches [10, 11] is whether the scalar non-linear 

optimization approach used indeed finds the global optimal, given the complicated nature of the constraints 
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imposed by CPTs and the coarse-grained approach to finding weighting factors, both of which are issues 

acknowledged by the authors. These issues are avoided in this work by connecting optimal dual variables 

to weighting factors. 

When both the objective function and constraints are convex, a simple condition exists for constraint 

qualification and is commonly referred to as Slater’s condition [34, pg. 226]. This serves as one of the 

main reasons for adhering to a convex reformulation in the current approach, in addition to the provability 

of convergence for various numerical methods used to solve the optimization problem. Slater’s condition 

simply states that if the problem is convex and there exists a point which is strictly feasible, or in other 

words, every inequality in Eq. (6) is strictly satisfied, then the duality gap is zero. This holds trivially as 

the condition is violated only if all points are feasible but not in the strict sense. In such a situation, the 

error threshold can be infinitesimally perturbed as it is an input parameter and the points are now strictly 

feasible. Thus, a scalar optimization approach can indeed be used to solve the problem in Eq. (6) and the 

resultant surrogate composition is indeed the optimal, assuming the convex reformulation is performed using 

a large enough map of the nonlinear constraints. 

The definition for importance factors provided in [11] depends on how the weighting factors are increased, 

which has been done in powers of 10 to span a global range. Along with it, for a particular set of CPTs, the 

weighting factor is dependent on the particular optimization process, which should not be the case. Under 

conditions of strong duality, this notion can be made more consistent. For a constraint Fi(x) ≤ vi, let p ∗(v) 

denote the optimal value of the objective function for a given v and that the original problem is defined to 

be when v = 0. The optimal dual variables λ∗ , which are identical to the weighting factors under strong 

duality, are in fact linked to the objective function and constraints through the result [34, pg. 249]. 

∂p∗ 

− (0) = λ ∗ (7)
∂vi

i 

The left-hand-side quantity in Eq. (7) is referred to as the sensitivity coefficient of a particular constraint. 

This can be written specifically for Eq. (6) and thus, the sensitivity coefficient of each CPT, denoted by γi, 

is defined as 
1 ∂f 

γj = − (8)
tj ∂�0 j 

where f corresponds to the objective functions used in Section 2.3 and tj is the target value of the jth CPT. 

However, only the inner hypercuboid and maximum-volume ellipsoid can be utilized for this purpose. This 

is because the problem of finding the outer hypercuboid involves solution to multiple optimization problems 

and as this involves several objective functions, a consistent definition of sensitivity coefficient cannot be 

made. Similarly, the axis-aligned hyperellipsoid involves objective functions in a coordinate system which 
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is stretched as a function of the error thresholds themselves and the objective function will thus not reveal 

the exact sensitivity to the thresholds. 

It is important to remember that the sensitivity coefficient γi between different objective functions cannot 

be compared. Even in the case of comparing different CPTs using the same objective function, one must not 

ascribe meaning to the absolute number, but only to the relative magnitudes of the sensitivity coefficients, 

since the objective function is unrelated to any CPT as it is based on a measure of the feasible region. It 

is for this reason that sensitivity coefficients defined using this method are recommended to be reported as 

a unit vector. As an example, the weighting factors are calculated by solving the dual problem, which is 

automatically performed by the optimization solver, using only linear constraints as discussed in Section 2.3, 

for the purpose of maintaining strong duality. 

Name Inner Hypercuboid MV Hyperellipsoid 

γM W γHC γMW γHC 

Dooley et al. [7] 0.0 1.0 0.044 0.999 

Violi et al. [3] 0.0 1.0 0.0 1.0 

Stanford A [23] 1.0 0.0 0.044 0.999 

Stanford B [23] 1.0 0.0 0.044 0.999 

Table 5: Sensitivity coefficients for Eq. (6) when characterized using the inner hypercuboid along and maximum-volume (MV) 

hyperellipsoid at error thresholds for molecular weight (γMW ) and H/C ratio (γHC ) presented in Table 2. Values have been 

rounded to zero if less than 10−6 

Table 5 provides a summary of the sensitivity coefficients at the same error thresholds of �0 used toi 

generate the results in Section 3.1 for molecular weight and H/C ratio. The results illustrate that the 

importance of a CPT is specific to the objective function, especially in the case of the surrogate mixtures 

in [23], where, depending on whether the inner hypercuboid or maximum-volume hyperellipsoid is used to 

characterize the search space, the sensitivity coefficients are modified. Thus, optimal weighting factors and 

in this case, sensitivity coefficients, should not be used as a measure of importance for CPTs in general as 

they are dependent on the objective function. They only help to quantify whether a particular constraint is 

active, or in other words, provides a characterization of the importance of a particular CPT for that optimal. 

Also, what is more practically relevant is the sensitivity of the mole fraction of a particular compound to the 

change in error threshold. For this, one must be able to solve the optimization problem itself as a function 

of the error threshold. This motivates an approach where the error threshold is also a parameter and this 

is the subject of discussion for Section 4. 
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3.3. Effect of CPT models 

The use of palette-specific regression models or linear blending rules has been commented upon in 

Section 2.1, but the effect of using such schemes on the final surrogate composition remains to be probed. 

This subsection discusses the results obtained by swapping the ignition delay time using the full mechanism 

with a linear blending rule for DCN. Kim et al. [12] use a volume-fraction weighted approach for obtaining 

the DCN of candidate mixtures. Ahmed et al. [11] construct surrogates using a linear blending rule for the 

research octane number (RON), with mole fraction being suggested as an alternative. This blending rule has 

been used in this study for a fair comparison. The surrogate constructed using the linear blending rule was 

compared in [11] with the mixture calculated using batch reactor simulations and controlled autoignition 

CO profiles in an engine were measured for these fuels. The linear blending rule based fuel was found to 

consistently exhibit higher reactivity of around 10%, thus highlighting the deviation due to simplified models 

for CPTs. Also, multiple blending models developed for the purpose of octane number prediction in fuel 

blends require a non-linear correction term and it is a well-acknowledged fact that linear blending rules 

cannot predict the octane number in numerous situations [40]. 

The optimization problem described in Eq. (6) is solved with the IDT constraint replaced by a DCN 

constraint and the error threshold being the same as prescribed for IDT in Table 2. The DCN is obtained 

using a linear mole-fraction blending rule [11], written as DCN = dT x, where d = [d1, d2, . . . , dNs ] represents 

the pure-component DCNs, which has been obtained from [41]. 
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Tables 6 and 7 summarize the four surrogate mixtures and their characterizations using a linear mole-

fraction blended DCN (referred to as “Blended”) instead of the ignition delay time as a CPT. The differences 

are clear as they are present for every surrogate composition and characterization, thus highlighting the 

importance of using consistent and uniform definitions of CPTs while evaluating surrogate compositions. 

Some of the mole fractions differ by over 20%, as observed in the case of iso-octane for various JP-8 surrogates. 

In fact, the range of the feasible region predicted itself is non-overlapping for Stanford A surrogate and further 

stresses the importance of using a particular model for evaluating the CPT. Once the CPT and its method of 

evaluation is fixed, the next variable is the error threshold, and its effect on the final surrogate composition 

is discussed in the next section. 

4. Multi-parametric optimization approach to surrogate representation 

The results presented so far assume that the error thresholds are fixed and it is useful to study the 

variation of composition ranges with thresholds as it provides a measure of sensitivity. This translates to 

being able to solve the convex optimization problems presented in Section 2 with the error thresholds as 

parameters. The theory for multi-parametric optimization is well-developed in the case of linear constraints 

and objective functions [42] and helps to achieve the same. 

Molecular weight, H/C ratio, TSI and sum of mole fractions are the linear constraints in Eq. (4) and 

can be visualized as planes demarcating feasible regions in composition space. However, when the problem 

is to be solved with �HC as a parameter, the H/C constraint can be written as 

(h − tHC (1 − �HC )c)
T x ≥ 0 

(9) 
(h − tHC (1 + �HC )c)

T x ≤ 0 

Equation (9) represents a ‘bilinear’ constraint due to the product of the parameter �HC and the optimiza-

tion variable x, both of which are unknowns in a multi-parametric optimization problem. Such bilinear 

constraints are, however, computationally tractable and can be solved by relaxing the original optimization 

problem using McCormick envelopes [43]. 

The main benefit of the multi-parametric approach is that one can obtain information as functions of 

the error thresholds, which would have previously taken one complete solution to the optimization problem 

for each parameter set. To illustrate the use of the multi-parametric approach, the lower and upper bounds 

for mole fractions are derived for the surrogate mixtures presented in Table 1, as a function of the two 

linear constraints, molecular weight and TSI. The objective function is identical to the one utilized in 

constructing the outer hypercuboid. The restriction to only linear constraints is because existing multi-

parametric optimization solvers are compatible only with such constraints [44]. The optimization problem 

34 



can be summarized as 

z(x, �MW , �T SI ) := minimize/maximize xi 
x 

NsX 
subject to xi = 1 

i=1 (10) 

− �MW 
T≤ m x − tM W ≤ �MW 

hT x − �T SI ≤ 
cT x 

− tT SI ≤ �T SI 

Although the optimal can be expressed in closed form for linear objective functions and constraints, 

the use of computational tools is necessary to identify the regions of applicability of a particular solution. 

The optimal solutions are piecewise-linear functions and can be expressed in terms of error thresholds. The 

multi-parametric optimization was performed using the MPT3 toolbox [44], which was also coupled with 

Cantera [45] for obtaining other physicochemical properties. 

Figure 12 shows the lower and upper bounds of mole fractions as a function of the specified molecular 

weight and TSI threshold. The proposed experimental compositions lie along the �MW , �T SI = 0 line as 

they correspond to the exact target properties. The threshold is depicted up to an arbitrary value of 25 

g/mol to specifically illustrate that it can be evaluated beyond the prescribed experimental uncertainty of 

6 g/mol in [14]. Similarly, the TSI threshold is presented up to an arbitrary value of 4. Two planes -

each corresponding to the lower and upper bound are presented for each compound in the palette. The 

experimental composition always lies between these planes, thus demonstrating the consistency between 

experimental and multi-parametric approaches to surrogate representation. The optimal solutions obtained 

using computations are indeed verified to be piecewise-linear functions of the error thresholds, as expected 

from the theory of multi-parametric optimization [42, pg. 8]. 

Once the compositions are known as functions of error thresholds, the problem of determining the effect 

of a particular constraint simply translates to evaluating the slope of these piecewise-linear functions at the 

given error thresholds. Thus, knowledge about sensitivity coefficients, optimal weighting factors and dual 

variables, which are equivalent upto constant factors as discussed in Section 3.2 can be obtained directly. It 

is important to remember that these depend on the objective function under consideration and should not 

be used to provide generalizations regarding the constraints or palette compounds. 

5. Conclusions 

In this work, a computational procedure is presented to construct surrogate descriptions of fuels using 

information on experimental uncertainty. This study also provides a sound theoretical foundation using 

tools from optimization theory and the described computational procedure is compared with experimental 

surrogates for two aviation fuels, Jet-A and JP-8. Also, a consistent description of physical properties of fuels 
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(a) JP-8 Surrogate from [3] (b) Jet-A Surrogate from [7] 

(c) JP-8 Surrogate (Stanford A) from [23] (d) JP-8 Surrogate (Stanford B) from [23] 

Figure 12: Lower and upper bound of mole fractions in surrogates proposed in [3, 7, 23] respectively as a function of the 

molecular weight threshold �MW , which ranges from 0 ≤ �MW ≤ 25 (g/mol) 

in surrogate descriptions is presented through the use of the recent ASTM D2887 standard. Both physical 

and chemical combustion property targets, including ignition delay time and distillation curve errors, are used 

for the characterization of surrogates in the presence of experimental uncertainty. Particularly, agreement 

between experimental and computational descriptions of surrogates is shown to ensure consistency between 

the two concepts. Most of all, it is shown that surrogate compositions require the description using a feasible 

region and are thus not unique. Key findings on the importance of particular CPTs and weighting factors in 

existing computational approaches using the proposed theoretical background are presented. The equivalence 

of weighting factors, sensitivity coefficients and dual variables is shown under plausible assumptions. The 
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effect of using simplified models for CPTs on the final surrogate composition is shown using the example 

of linear blending rules for ignition delay. The framework for multi-parametric optimization approach 

is presented and it is shown that sensitivity information can be obtained as a function of experimental 

uncertainty by solving only one optimization problem. The question of whether the palette compounds can 

be obtained using an algorithm can be addressed by generalizing the current optimization framework to 

mixed-integer programs and will be discussed in subsequent work. 
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Nomenclature 

Greek Symbols 

β Recovered mass fraction 

�0 j Relative error threshold for jth CPT 

�j Absolute error threshold for jth CPT 

γj Sensitivity coefficient 

λj Dual variable for constraint j 

E Ellipsoid 

θi Threshold sooting index of compound i 

Roman Symbols 

A Polyhedron matrix in composition space 
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ithai row in constraint matrix 

B Ellipsoid transformation matrix 

b Polyhedron right-hand side in composition space 

l Lower bound of hypercuboid 

m Molecular weight 

Q Ellipsoid quadratic transformation, Q = BBT 

u Upper bound of hypercuboid 

v Constraint perturbation 

w General point in composition space 

x Mole fraction 

ci Number of carbon atoms in species i 

di Derived cetane number of compound i 

f Objective function 

Fj Constraint function for jth CPT 

hi Number of hydrogen atoms in species i 

Nnl Number of nonlinear CPTs 

Ns Number of species/compounds in palette 

∗ p Optimal objective when constraints perturbed by v 

p0 Ambient pressure 

R Chebyshev radius 

Sj Feasible region for jth CPT 

T0 Ambient temperature 

tj Target value for jth CPT 

DCN Derived cetane number 
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Superscripts 

+ Positive entries 

– Negative entries 

Subscripts 

AA Axis-aligned 

DC Distillation curve 

HC H/C ratio 

IDT Ignition delay time 

in Inner hypercuboid 

MV Maximum-volume 

MW Molecular weight 

TSI Threshold sooting index 

Supplementary Information 

The MATLAB program to quantify surrogate uncertainty is available online at http://github.com/IhmeGroup/ 

MPT_surr and can be utilized for further characterizations of surrogates. The data for the ignition de-

lay times is generated by a separate parallel Python program, which can also be found online at http: 

//github.com/IhmeGroup/pyIDT. 

A. Numerical methods for surrogate representation 

This section discusses the numerical methods used to obtain the surrogate representation in this paper. 

First, the inner and outer hypercuboids are presented, followed by the discussion on ellipsoids. Despite the 

similarities in the geometrical idea of using bounding figures, but of different shapes, the discussion in this 

section clearly illustrates that there are many differences in the numerical approach between hypercuboids 

and hyperellipsoids. The constraints are approximated using a convex hull, as discussed in Section 2.3 and 

is thus given by a polyhedron in composition space. This can be concisely represented as Ax ≤ b, where 

both A and b are functions of relative error thresholds �0 i. 
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A.1. Hypercuboids 

Suppose l and u denote the lower and upper limits of coordinates in composition space of the inner 

hypercuboid, then l ≤ x ≤ u denotes the hypercuboid itself. The volume of the hypercuboid is given by 
NsY 

(ui − li). It is necessary to utilize an equivalent objective function which is convex for it to be compatible 

with optimization solvers [46]. The geometric mean is known to be concave [34, pg. 74] and thus its 

negative can be minimized while being constrained inside the polytope as a convex optimization problem. 

It must be ensured that the entire hypercuboid lies inside the polytope and for this, it is sufficient that the 

vertices satisfy the constraints. However, this leads to an exponential number of constraints and makes the 

problem computationally intractable. Noting that both l and u are non-negative as they represent mole 

fractions, these constraints are in fact equivalent to a single inequality. Defining A+ 
ij = max(0, Aij ) and 

A− = min(0, Aij ), the equivalent constraint is given by A+u + A−l ≤ b. In other words, the maximum-ij 

volume axis-aligned hypercuboid that strictly lies inside the search space is given by the convex optimization 

problem 

minimize − geometric mean(u − l) 
x (11) 

subject to A+ u + A−l ≤ b 

The outer hypercuboid is easier to construct and essentially involves solving multiple convex optimization 

problems, each one either minimizing or maximizing a particular coordinate while being restricted to the 

polytope. This can be written as 

minimize/maximize xi 
x (12) 

subject to Ax ≤ b 

Here, xi denotes the i-th coordinate in composition space. 

A.2. Hyperellipsoids 

As discussed in Section 2.3.2, a hyperellipsoid around the surrogate composition is represented as 

E = {Bw + x such that kwk ≤ 1} (13)2 

where B can be assumed, without loss of generality, to be a positive-definite matrix. It is useful to note that 

axis-aligned hyperellipsoids are given by diagonal matrices. The volume is proportional to the determinant, 

denoted by det(B), and its logarithm is commonly used as an objective function, as it can be shown to 

be a concave function [34, pg. 74]. The search space polytope can be represented plane-wise as S = 

T{w such that ai w ≤ bi}. Since the maximum-volume hyperellipsoid must lie completely within this region, 

Tit must be that supkwk ≤1 a (Bw + x) ≤ bi. On expanding the product, it is noted that this is equivalent toi2 

40 



2 
TkBaik +ai x ≤ bi and serves as the constraint for the optimization problem. With this, the maximal-volume 

hyperellipsoid can be written as 

minimize − log det(B) 
x (14) 

Tsubject to kBaik + ai x ≤ bi2 

Axis-aligned hyperellipsoids cannot be obtained using the previous approach as a diagonal-only constraint 

on the matrix B is not a part of disciplined convex programming. However, they can be obtained by fitting 

a maximal-volume hypersphere in a scaled search space, where it spans equally in all dimensions, and is then 

rescaled back to the original [47]. The center of the maximum-volume hypersphere is commonly referred 

to as the Chebyshev center and similar terminology is used for the radius and the hypersphere/ball itself. 

TOnce again, writing the convex polytope in a plane-wise fashion, it must be that supkuk (x + Ru) ≤ bi≤1 ai2

Twhich can be simplified as ai x + R kaik Thus, the Chebyshev center and radius R can be found by 2 ≤ bi. 

solving the linear program 

maximize R 
x 

T (15)subject to ai x + R kaik ≤ bi2 

R ≥ 0 

Once the radius and center are obtained, the space is rescaled back to the original and it is important to 

remember that both the axes lengths and origin are to be updated. As mentioned in Section 2.3.2, the same 

approach can be used to fit an arbitrary object inside a polyhedron. 

B. Verification of computational surrogates 

This section summarizes the various computational surrogate compositions and verifies that their CPTs 

are indeed within the prescribed experimental uncertainties. As discussed in Section 3.1, the centers of 

the inner hypercuboid, axis-aligned hyperellipsoid and maximum-volume hyperellipsoid serve as sample 

points inside the geometric objects used to describe the feasible region and should satisfy the CPTs within 

experimental uncertainty. The centers corresponding to each surrogate listed in Table 1 were presented in 

Tables 3 and 4, and can be summarized for the three geometrical objects under consideration in Tables 8 to 

10. 
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The CPTs for each surrogate are evaluated at the three centers and are compared with the lower and 

upper bounds. The results are summarized in Tables 11 to 14. 

CPT xin xAA xMV Lower Bound Upper Bound 

Molecular Weight 138.53 138.35 138.49 131.76 145.63 

H/C Ratio 1.957 1.954 1.958 1.950 1.969 

Threshold Sooting Index 21.432 21.634 21.429 20.586 22.301 

Ignition Delay (s) 14.32e-04 14.39e-04 14.11e-04 12.62e-04 16.40e-04 

Distillation Curve Error (K) 52.355 52.313 52.069 51.701 53.010 

Table 11: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume 

hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the Jet-A 

surrogate in [2] 

CPT xin xAA xMV Lower Bound Upper Bound 

Molecular Weight 151.00 151.33 150.63 143.73 158.86 

H/C Ratio 2.085 2.086 2.085 2.069 2.094 

Threshold Sooting Index 9.768 9.852 9.839 9.447 10.234 

Ignition Delay (s) 5.99e-04 6.09e-04 6.18e-04 5.15e-04 6.29e-04 

Distillation Curve Error (K) 94.400 94.703 94.541 93.699 96.071 

Table 12: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume 

hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 

surrogate in [3] 

CPT xin xAA xMV Lower Bound Upper Bound 

Molecular Weight 139.20 141.91 139.61 133.28 147.31 

H/C Ratio 2.092 2.092 2.092 2.079 2.100 

Threshold Sooting Index 9.719 9.780 9.804 9.409 10.194 

Ignition Delay (s) 8.26e-04 7.78e-04 8.48e-04 7.46e-04 9.17e-04 

Distillation Curve Error (K) 96.037 95.431 95.875 95.175 97.585 

Table 13: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume 

hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 

Stanford A surrogate presented in [23] 

It can be observed that every CPT for all centers and surrogates lie within the range of experimental 

uncertainty, and thus within the feasible region. Thus, the surrogates obtained from computations are 

consistent with experimental descriptions up to the reported range of uncertainties and hence, unifying both 
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CPT xin xAA xMV Lower Bound Upper Bound 

Molecular Weight 136.19 136.81 136.15 129.20 142.80 

H/C Ratio 1.934 1.934 1.935 1.902 1.939 

Threshold Sooting Index 15.624 15.583 15.429 14.902 16.144 

Ignition Delay (s) 7.67e-04 7.72e-04 7.68e-04 7.07e-04 8.92e-04 

Distillation Curve Error (K) 97.148 96.986 96.946 96.931 99.385 

Table 14: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume 

hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 

Stanford B surrogate presented in [23] 

computational and experimental surrogate descriptions. 
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	1. 
	1. 
	Introduction 


	Transportation fuels consist of a large number of compounds that aﬀect physical and chemical properties of the mixture. To simplify the complexity, these fuels are often represented by a surrogate description [1], which involves choosing a certain set of compounds, usually present in the original fuel, called palette compounds, to closely emulate certain properties of the present fuel. The signiﬁcant challenge is, however, to determine the speciﬁc composition that best emulates relevant properties of intere
	-

	Pitz et al. [5, 6] reviewed eﬀorts for gasoline and diesel fuels on surrogate formulations, kinetic model development, and experimental validation. Due to compositional variability of original fuels, it is important to choose combustion properties that capture the fuel description while being easy to measure and insensitive to procedural uncertainties. Dooley et al. [7] provided a list of CPTs in an aim to further develop a generic methodology for gas-phase combustion kinetic phenomena. Colket et al. [8] fo
	-

	Currently, two diﬀerent paradigms of surrogates exist in the literature, namely experimental and computational surrogates. The former is the more widely adopted approach [7], which uses only experimental procedures to determine CPTs, from which surrogates are then determined. In contrast, the formulation of computational surrogates are a more recent approach and are determined by evaluating CPTs using only simulations. The accuracy of these so-deﬁned computational surrogates in emulating the properties of t
	-
	-
	-

	Physical property emulation is another subject that requires more investigation in the area of surrogate representation. Violi et al. [3] matched volatility of fuels along with other chemical properties relevant for ignition using experimental techniques. Certain computational approaches for physical property emulation include matching only evaporation [15, 16] and distillation characteristics [17, 18, 19]. Ahmed et al. [11] utilized a computational approach for constructing surrogate compositions by includ
	chemical properties. However, the use of experimental distillation curves based on the ASTM D86 standard 
	[20] and advanced distillation curve methodology (ADC) [21], as the descriptor of physical fuel characteristics is questionable due to experimental uncertainties of this approach. Recent advancements in the distillation standard [22] are shown in this paper to oﬀer a solution which is consistent with a computational approach and to provide a viable characterization for distillation. 
	This paper primarily aims to quantify the eﬀect of experimental uncertainty in the surrogate composition. The use of tools from optimization theory imparts rigor and helps quantifying bounds on compositions as a function of uncertainties. Certain experimental surrogate mixtures are utilized for benchmarks and provide a connection between the computational and experimental surrogate approaches. 
	Table 1 summarizes the palettes of various jet fuel surrogates used in this paper. The compounds present in these palettes are speciﬁcally chosen to be representative of diﬀerent classes of organic compounds [2], which include n-paraﬃns, iso-paraﬃns, cycloparaﬃns and aromatic compounds. This variation also oﬀers a suitable benchmark for CPT evaluations since a purely computational approach is adopted in this paper. Both 4-and 5-compound surrogates are used to highlight the palette size independence of the a
	Name 
	Name 
	Name 
	Methylcyclohexane 
	-

	Toluene 
	-

	Benzene 
	-

	iso-Octane 
	n-Dodecane 
	-

	n-Propylbenzene 
	-

	1,3,5-Trimethylbenzene 
	-


	Jet-A POSF 4658 (Dooley et al. [7]) 
	Jet-A POSF 4658 (Dooley et al. [7]) 
	0.295 
	0.404 
	0.228 
	0.073 

	JP-8 (Violi et al. [3]) 
	JP-8 (Violi et al. [3]) 
	0.1 
	0.1 
	0.01 
	0.055 
	0.735 

	JP-8 (Stanford A [23]) 
	JP-8 (Stanford A [23]) 
	0.1 
	0.1 
	0.01 
	0.25 
	0.54 

	JP-8 (Stanford B [23]) 
	JP-8 (Stanford B [23]) 
	0.1 
	0.295 
	0.01 
	0.055 
	0.54 


	Table 1: Abbreviated compounds used in palettes along with their mole fractions for jet fuel surrogates from [3, 7, 23], which are used for benchmarks in this paper. 
	The remainder of this paper is outlined as follows. The method used to incorporate physical properties and experimental uncertainties is described in detail in Section 2. First, a consistent approach to using distillation curves as a CPT is presented. Subsequently, the incorporation of experimental uncertainties in computational approaches to surrogate representations is discussed. The presented methodology is applied to the construction of jet fuel surrogates in Section 3, where limitations in current lite
	2. Methodology 
	This section discusses in detail the methods aimed towards the problem of determining the surrogate composition under consideration of uncertainties that are introduced by experimental methods and computational models. After reviewing relevant CPTs in Section 2.1, Section 2.2 deals with the necessity of incorporating experimental uncertainties into the description of the surrogate composition. Then, Section 2.3 discusses methods that provide consistent descriptions of CPTs obtained through experiments and c
	-
	-

	2.1. Consistent description of CPTs 
	2.1. Consistent description of CPTs 
	To specify the surrogate composition from the palette of compounds, a set of CPTs [2, 7] are prescribed to constrain fundamental molecular properties that manifest in the occurrence of combustion-related phenomena. This approach has been used without speciﬁcally referring to them as CPTs in several previous studies [3, 8, 26]. CPTs can be broadly classiﬁed into physical and chemical target properties, with the former including molecular weight, H/C ratio and volatility, while ignition delay time (IDT) and t
	-

	Consistent descriptions between experiments and computations are desired for CPTs to provide a uniﬁed representation of surrogates obtained using experimental and computational approaches. The various approaches used to evaluate commonly used CPTs is presented as follows [2] 
	-

	• 
	• 
	• 
	Molecular Weight: This property is directly evaluated using the composition; since it is a weighted average of individual molecular weights, this is a linear constraint on the mixture composition. 

	• 
	• 
	H/C ratio: This constraint can also be evaluated directly from the composition and is also a linear constraint, since it can be recast into a set of linear inequations. 

	• 
	• 
	Threshold Sooting Index: The TSI is experimentally based on the maximum smoke-free laminar diﬀusion ﬂame height and can be predicted through a group-contribution approach [27]. Since this method only involves a linear combination of coeﬃcients, TSI is a linear constraint for computational purposes. 

	• 
	• 
	Ignition Delay Time: This is experimentally determined using a standardized ignition quality tester and the more relevant quantity of interest is the derived cetane number (DCN). DCN is expressed in non-dimensional units and varies inversely with the IDT [28]. The standard computational approach is to use a 0D-batch reactor simulation at speciﬁc conditions to evaluate this using a chemical mechanism. This mechanism is usually ensured to yield similar results between experiments and computations, but the mar


	Figure
	Figure 1: Comparison between experimental ignition delay time for Jet-A [2] and JP-8 measured in [23] at 20 atm and φ =1 with computations performed using the 451-species POLIMI mechanism [24, 29] for the surrogates listed in Table 1 
	Figure 1 presents the validation of the chemical mechanism against experimental data at 20 atm using a constant-volume batch reactor to calculate the auto-ignition delay time. Uncertainties in the shock tube measurements of around 15% [23] have been reported in the ignition delay time, but the computational predictions deviate to a larger extent and require incorporating a large error threshold to capture the experimental data. Thus, it is important that, given the current state of chemical mechanisms, a me
	Other computational approaches to evaluating IDTs involve either pressure-based empirical corrections 
	Other computational approaches to evaluating IDTs involve either pressure-based empirical corrections 
	[30], palette-speciﬁc regression models [14] or linear mixing rules [12] that hold true only at DCN conditions. Given the restrictions of these approaches and the additional interpolation error, which can be incurred in them, this work uses the entire POLIMI mechanism for obtaining the ignition delay times. This is computationally tractable as the ignition delay time can be evaluated in parallel and a computational ignition delay time calculator which leverages this parallelism has been developed and is uti

	• Distillation Curve: The ﬁnal CPT under consideration is the volatility of a fuel and is characterized using the distillation curve, which expresses the temperature as a function of the recovered mass fraction. This is usually obtained experimentally using the ASTM D86 standard [20]. Shortcomings of this procedure are discussed in detail by Bruno et al. [31], involving systematic errors that depend on apparatus geometry and heating rate. To isolate fuel eﬀects from these measurements, uncertainty bounds fo
	-
	-
	-

	Figure 2(a) shows that ASTM D2887 results closely follow the fractional distillation bounds predicted using computations. This is not the case using the ASTM D86 standard, as can be observed in Figure 2(a). The ASTM D2887 standard oﬀers a precise notion of determining the distillation curve and a formalism to incorporate physical properties in the surrogate representation procedure. The area between the experimental data and computed fractional distillation curve, shaded in gray, is chosen as the objective 
	Figure 2(b) highlights the fact that the fractional approach to distillation is in better agreement with the D2887 standard as compared to the existing approach for evaluating distillation-curve as a CPT, which involve bubble-point calculations in steps of evaporated volume and is referred to as the ‘step-volume’ approach in this paper. This method was initially discussed in [32] in the context of surrogate fuel construction and later adopted in [12] for constructing surrogates emulating both physical and c
	Figure
	(a) (b) 
	Figure
	(c) 
	Figure 2: a) Distillation curve for POSF 4658 Jet-A experimentally measured using both D86 and D2887 standards. The ﬂash and fractional bounds for the distillation curve are obtained using the procedure described in [25]. The area shaded in gray shows the diﬀerence between experimental D2887 curve and the computational fractional distillation b) Comparison between fractional distillation and step-volume approach [12, 32] against the experimental D2887 curve for Jet-A surrogates, POSF 12765 and POSF 12785 [3
	fuels, POSF 12765 and POSF 12785, which are two surrogates blended for the average Jet-A. These consist of 1,3,5-trimethylbenzene and iso-octane blended with either n-dodecane or n-hexadecane, thus closely resembling the palette for the POSF 4658 surrogate presented in Dooley et al. [7]. The fractional distillation approach captures both the length and height of the fractional distillation steps obtained using the ASTM D2887 standard. Although the step-volume approach was demonstrated to capture D86 standar
	to discontinuous distillation curves, which cannot be inherently captured using this method and thus, 
	the fractional distillation method is advocated for eventual surrogate constructions. 
	The fractional distillation curves and associated objective functions are evaluated using the method described in [25] and is presented in Figure 2(c) for the surrogates listed in Table 1. The step proﬁle of the distillation curve is indicative of the boiling temperature of each species and its proportion in the surrogate mixture. Using this method, all four surrogates distinguish themselves through this CPT, which is based only on physical properties. 
	2.2. Incorporating experimental uncertainties 
	2.2. Incorporating experimental uncertainties 
	This subsection discusses the necessity of incorporating experimental uncertainties in the surrogate description of fuels. This is demonstrated through the variability due to ignition delay time errors in surrogate compositions. The ignition delay time is one of the combustion property targets used by Dooley et al. [7] and was introduced to account for the gas-phase kinetics of a fuel. Standard measurements for IDT involve uncertainties of the order of 15% [23], and reported experimental errors for DCN are 
	-
	-

	To assess the importance of this, simulations are performed, wherein the molecular weight and H/C ratio of the target fuel are matched exactly, similar to previous computational approaches [10] and then, the range of compositions corresponding to an IDT with at most 15% variation is evaluated. This is done for the surrogate presented in [3] and the Stanford A mixture in [23]. Note that this means three constraints are prescribed in the optimization problem, namely, molecular weight, H/C ratio and that the s
	The nomenclature adopted for the relevant equations is that both vectors and matrices are denoted in bold-face, with vectors in small letters and matrices in capitals, in accordance with standard notation in optimization. Given that the mole fractions of the palette composition, with number of species Ns, are denoted by x =[x,x,...,xN]and m =[m,m,...,mN]represents the molecular weights of each compound in the palette along with h =[nH,1,nH,2,...,nH,N]and c =[nC,1,nC,2,...,nC,N]
	The nomenclature adopted for the relevant equations is that both vectors and matrices are denoted in bold-face, with vectors in small letters and matrices in capitals, in accordance with standard notation in optimization. Given that the mole fractions of the palette composition, with number of species Ns, are denoted by x =[x,x,...,xN]and m =[m,m,...,mN]represents the molecular weights of each compound in the palette along with h =[nH,1,nH,2,...,nH,N]and c =[nC,1,nC,2,...,nC,N]
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	representing the number of hydrogen and carbon atoms in each compound respectively, the feasibility region can be deﬁned implicitly through a feasibility problem, or in other words, an optimization problem [11] with an irrelevant objective function, and hence assumed ﬁxed. This feasibility problem can be formally written 
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	Figure
	(a) JP-8 Surrogate from [3] (b) JP-8 Surrogate from [23] 
	Figure 3: Contour plot of IDT deviation from experimental value at DCN conditions (p= 22.4 bar and T= 833 K) for surrogate compositions, which satisfy the respective given molecular weight and H/C ratio, as presented in [3] and Stanford A [23] for JP-8, also listed in Table 1. Note that the remaining components are not held constant but satisfy the constraints. The proposed experimental surrogate composition is marked by the red symbol 
	0 
	0 

	Figure 3 shows a map of the ignition delay times evaluated for the two surrogate compositions proposed in [3] and [23] for JP-8. Note that the three prescribed constraints are suﬃcient to narrow down the possible surrogate compositions to a set where the ignition delay times are indistinguishable within the experimental uncertainty of 15%. Even in the case of Figure 3(b), a major portion of the feasible region is indistinguishable and the prescribed constraints can be interpreted as leading to non-unique so
	2.3. Convex optimization approach to surrogate representation 
	2.3. Convex optimization approach to surrogate representation 
	This subsection presents formal procedures to incorporate experimental uncertainties into the description of surrogates through the use of tools from convex optimization. This procedure ensures convergence to the optimal, places no restrictions on the search space due to computational limitations and avoids the use of weighting factors. The error thresholds for CPTs serve as parameters for the optimization problem. The CPTs only specify constraints and thus, narrow down the search space for the surrogate co
	Given that experimental uncertainties are described using tolerances centered at the reported value, a natural description of uncertainty in the surrogate composition would be through the use of a tolerance radius, centered at each mole fraction contained in the composition of a particular surrogate. The choice now lies between whether this range of compositions either inscribes or circumscribes the search space. 
	Figure
	Figure 4: Illustration of the feasible region (in red) being inscribed (in black) and circumscribed (in blue) by hypercuboids 
	Figure 4 illustrates how the feasible region can be approximately described using inner and outer hyper-cuboids. The experimental composition, shown using the red triangle, need not necessarily lie within the inner hypercuboid, but must do so within the outer hypercuboid, as will be discussed in detail later in this section. The aim of characterizing the surrogate search space using this simplistic description is shown to also provide information regarding the importance of a particular compound in the pale
	Figure 4 illustrates how the feasible region can be approximately described using inner and outer hyper-cuboids. The experimental composition, shown using the red triangle, need not necessarily lie within the inner hypercuboid, but must do so within the outer hypercuboid, as will be discussed in detail later in this section. The aim of characterizing the surrogate search space using this simplistic description is shown to also provide information regarding the importance of a particular compound in the pale
	compound in the palette and that there is at least one feasible surrogate composition where these values are attained. Similarly, an inner bounding hypercuboid represents the largest tolerances that lie completely within the feasible region. This problem is tractable when the search space is a convex polytope and in the case of CPTs, which are linear, this is indeed the case. In case of nonlinear CPTs, examples of which include ignition delay time and error in distillation curve prediction, the convex hull 

	The constraints arising from CPTs on inclusion of experimental uncertainties become inequalities. Using the same notation as Eq. (1), the constraints can be summarized as 
	z(x; .MW , .HC , .j ) := minimize x 
	z(x; .MW , .HC , .j ) := minimize x 
	z(x; .MW , .HC , .j ) := minimize x 
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	TR
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	subject to 
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	TR
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	TR
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	TR
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	where f stands for the objective function of choice, which is required to be a convex function. Appropriate choices for the objective function will be discussed in detail in Sections 2.3.1 and 2.3.2. Nonlinear CPTs, examples of which include the error norms on distillation curve or ignition delay time, are represented by Fj (x). Also, .j represents the uncertainty for the jnonlinear property target, which in turn determines the corresponding feasible region Sj , with j =1, 2,...,Nnl, where Nnl denotes the n
	th 

	.MW ,.HC = 0, with the distillation curve error given by 
	Z 
	1 

	kT (β) − Texp(β)k= |T (β) − Texp(β)| dβ (3) 
	kT (β) − Texp(β)k= |T (β) − Texp(β)| dβ (3) 
	1 


	0 
	Equation (3) serves as the sole nonlinear constraint in this illustrative example. This characterization of the distillation curve is appropriate as this CPT contains a series of measurements, or simply put, a 
	Equation (3) serves as the sole nonlinear constraint in this illustrative example. This characterization of the distillation curve is appropriate as this CPT contains a series of measurements, or simply put, a 
	vector-valued function. Since a CPT error is required to be characterized by one scalar, a norm is chosen to map this vector to a scalar, and it is a well-known fact that discrete norms are equivalent to one another, thus making the choice of a particular norm irrelevant. Thus, the integral of the `-norm is chosen as it is intuitive and corresponds to the area between the experimental and computational distillation curves. The common approach to distillation curve error involves using only one temperature p
	1


	Given the distillation curves, the problem of evaluating the distillation curve error is equivalent to Eq. (1), but with one nonlinear constraint, namely, the error between computational and ASTM D2887 distillation curve. Thus, based on the suggestion for demarcating the region of interest, the ignition delay time only needs to be evaluated in the feasible region given by Eq. (1). This has been applied to the problem framed for the two surrogate compositions shown in Figure 3. 
	Figure
	(a) JP-8 Surrogate from [3] (b) JP-8 Surrogate from [23] 
	Figure 5: Contour plot of the `-norm for error between computational and ASTM D2887 distillation curve for surrogate compositions, which exactly satisfy (.MW ,.HC = 0) the respective target molecular weight and H/C ratio for 2 of the 5 palette compounds, as presented in [3] and Stanford A mixture in [23] for JP-8. Note that the remaining components are not held constant but satisfy the constraints. The proposed experimental surrogate composition is marked by the red symbol 
	1

	Note that the optimization problem has to be solved again whenever a diﬀerent .j is utilized. However, if .j,1 >.j,2, then the corresponding feasible spaces Sj,1 and Sj,2 are related by Sj,2 ⊂ Sj,1, which essentially captures the fact that compositions within a certain tolerance also lie within a higher tolerance. Thus, a conservatively large value for .j,1 could be chosen to determine the quantity of interest for an appropriately-sized search space so that the constraint function does not require repeated 
	Note that the optimization problem has to be solved again whenever a diﬀerent .j is utilized. However, if .j,1 >.j,2, then the corresponding feasible spaces Sj,1 and Sj,2 are related by Sj,2 ⊂ Sj,1, which essentially captures the fact that compositions within a certain tolerance also lie within a higher tolerance. Thus, a conservatively large value for .j,1 could be chosen to determine the quantity of interest for an appropriately-sized search space so that the constraint function does not require repeated 
	the case of ignition delay time using large chemical mechanisms. The surrogate representation problem, presented in Eq. (2), can also be expressed in terms of relative errors using the simple transformation .= .k/tk, for any constraint index k. This does not lead to any change in the approach used to solve the
	0 


	k 
	optimization problem as linearity is still preserved. The resulting problem is stated using relative tolerances as follows, and is the convention for the remainder of this paper. 
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	Figure 5 shows a map of the error between computational and ASTM D2887 distillation curve for the two surrogate compositions proposed in [3] and [23] for JP-8, using the idea of reducing constraints in sequence before evaluating nonlinear constraints. It is important to note that the errors are high in magnitude, given that the surrogate composition distillation curve is based on at most ﬁve degrees of freedom in this case. The full composition is veriﬁed, in Figure 2a to give an error of less than 1 K for 
	2.3.1. Representation of search space using hypercuboids 
	2.3.1. Representation of search space using hypercuboids 
	The representation of the surrogate formulation using a convex polytope is, however, not amenable to a concise description, which is required when reporting the composition of a surrogate. A more natural description, as presented in Section 2.2, is using a tolerance radius and this translates to bounds which are hypercuboids in composition space. Once the constraints from CPTs have been represented as a convex polytope, the problem of ﬁnding the inner and outer hypercuboids can be written as a convex optimi
	optimization problem and its numerics are presented in Appendix A.1. 
	As an example for illustrative purposes, only the linear constraints, namely molecular weight and H/C ratio, from Eq. (4) are used on the Jet-A POSF 4658 surrogate given by Dooley et al. [7]. Note that TSI is also a linear constraint and is used later in this work. The relative error thresholds have been set to 0.05 for molecular weight, which corresponds to around 6g/mol, and 0.005 in the case of H/C ratio, as its average value is around 2 and a variation of 0.01 is reported [14]. 
	Figure
	Figure 6: Feasible region (in red outline) from linear constraints in Eq. (4) along with inner (in yellow) and outer (in blue outline) hypercuboids for the 4-compound Jet-A surrogate in [7] corresponding to the three degrees of freedom for mole fractions. The error thresholds for molecular weight .= 0.05 and .= 0.005 based on uncertainties reported in [14]. The red triangle
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	MW HC 
	depicts the proposed experimental composition 
	Figure 6 provides a visualization in composition space of the various constraints imposed in the optimization procedure. Note that the surrogate depictions involve one dimension less than the number of palette compounds as the mole fraction of the ﬁnal compound is enforced using the sum constraint. Thus, a 3D visualization is possible in the case of this surrogate mixture as the palette consists of four compounds. Larger palette sizes must be visualized using projections, preferably pairwise and hence, in t
	-

	A physical interpretation of these characterizations is that the inner hypercuboid represents a suﬃcient estimate of the uncertainty, in that, every composition within it deﬁnitely satisﬁes the CPTs. Note that the corresponding experimental surrogate compositions need not be contained in this region. The outer hypercuboid is more conservative and can be interpreted as a necessary estimate of the uncertainties, or in 
	A physical interpretation of these characterizations is that the inner hypercuboid represents a suﬃcient estimate of the uncertainty, in that, every composition within it deﬁnitely satisﬁes the CPTs. Note that the corresponding experimental surrogate compositions need not be contained in this region. The outer hypercuboid is more conservative and can be interpreted as a necessary estimate of the uncertainties, or in 
	other words, compositions satisfying all the constraints must at least lie within the outer hypercuboid. The fact that both inner and outer hypercuboid are required for containing the experimental composition is to be noted as it can lie outside the inner hypercuboid but must lie within the outer hypercuboid, given that it satisﬁes the constraints. In addition, the experimental composition lying within the feasible region obtained using computations is deemed as a ‘consistent’ surrogate as there are both ex

	Other geometrical objects that also result from solutions of convex optimization problems can be used for describing the search space and are discussed in the next section. 



	2.3.2. Representation of search space using hyperellipsoids 
	2.3.2. Representation of search space using hyperellipsoids 
	The tolerances could alternatively be interpreted as the semi-axis lengths of hyperellipsoids thus leading to the question of whether a hyperellipsoid would make a better descriptor of the search space. Hyper-ellipsoids can be described as images of unit hyperspheres, given by kwk≤ 1, under invertible linear transformations Bw + x; in symbolic form, a particular hyperellipsoid E can be represented as [34, pg. 30] 
	2 

	E = {Bw + x such that kwk≤ 1} (5)
	2 
	Note that B can be assumed, without loss of generality, to be a positive-deﬁnite matrix, as it results only from the stretching and rotation of the principal axes. Further details regarding the bounding ellipsoids and their construction are presented in Appendix A.2. The problem of constructing hyperellipsoids not just involves a diﬀerent objective function, but is numerically distinct from the construction of hypercuboids, as it is an example of a semi-deﬁnite program (SDP), where the constraints involve s
	[37] and it is important to distinguish it from the problems discussed in this section as the aspect ratio and orientation are ﬁxed by the prescription of the object. 
	To illustrate the ellipsoid calculations, the axis-aligned and maximum volume hyperellipsoid are con
	-

	structed for the Jet-A surrogate in [7] using only molecular weight and H/C ratio. The visualizations have been generated using the Ellipsoidal Toolbox for MATLAB [38]. 
	Figure
	Figure 7: Feasible region (in red outline) from linear constraints in Eq. (4) along with axis-aligned (in blue) and maximum-volume (in yellow) hyperellipsoids for the 4-compound Jet-A surrogate in [7] corresponding to the three degrees of freedom for mole fractions. The error thresholds for molecular weight .= 0.05 and .= 0.005 based on uncertainties reported in
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	[14]. The red triangle depicts the proposed experimental composition 
	Figure 7 depicts the axis-aligned (in blue) and maximum-volume hyperellipsoid (in yellow), along with the experimental composition. Note that alignment with the axes severely restricts the proportion of the feasible region which is captured. The maximum-volume hyperellipsoid contains the experimental composition within itself and is true even for the feasible region (in red outline). Thus, consistency between experimental and surrogate compositions is noted even when hyperellipsoids are used to characterize
	3. Applications 
	This section utilizes the methods described in Section 2 to construct and verify surrogate compositions using both physical and chemical properties. This primarily involves extending the usage to non-linear constraints, which is done by constructing a map of the non-linear function in the feasible region and approximating its boundary using a convex hull. It is obvious that one could come up with a nonlinear function which leads to feasible regions that are non-convex sets. The present study deals with igni
	into candidate surrogate compositions and is summarized as tolerances for proposed mole fractions. The 
	section concludes with a discussion on the importance of particular CPTs and their relation to weighting factors in regression-based approaches for surrogate representations [10, 11]. 
	It is important to remember that two distinct notions of surrogates exist in literature, namely experimental and computational surrogates, which are based on disconnected approaches. The former involves evaluating CPTs only using experimental approaches, while the latter predominantly utilizes computational models of varying ﬁdelity to evaluate them and particularly, for the step to determine the optimal surrogate composition. The primary contribution of this study and also the focus of this section, is to 
	-
	-



	3.1. Error tolerances of sample surrogate 
	3.1. Error tolerances of sample surrogate 
	The full optimization problem includes the use of TSI calculated using a mixture-averaged rule as a linear group-contribution approach [27], which was shown to be successful in predicting experimental values. The pure-compound TSI values are written as θ =[θ,θ,...,θN]. In addition, two nonlinear properties, namely ignition delay time and the distillation curve error, deﬁned in Section 2.3, are also utilized. The ignition delay times are ﬁrst evaluated over a discrete set of surrogate compositions, with a re
	The full optimization problem includes the use of TSI calculated using a mixture-averaged rule as a linear group-contribution approach [27], which was shown to be successful in predicting experimental values. The pure-compound TSI values are written as θ =[θ,θ,...,θN]. In addition, two nonlinear properties, namely ignition delay time and the distillation curve error, deﬁned in Section 2.3, are also utilized. The ignition delay times are ﬁrst evaluated over a discrete set of surrogate compositions, with a re
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	The error thresholds have been chosen based on experimental uncertainties presented in literature. Won et al. [14] report conservative estimates for uncertainties of various CPTs. The distillation curve error is calculated based on the fact that the error observed in [14] is around 1 K. Also, noting that the average values of distillation curve error shown in Figure 5, is around 80 K, a value of .= 0.0125 is utilized.
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	Appendix A. The full optimization problem can be summarized as 
	Appendix A. The full optimization problem can be summarized as 
	Appendix A. The full optimization problem can be summarized as 

	z(x; .0 , .0 , .0 , .0 , .0 ) :=MW HC T SI IDT DC 
	z(x; .0 , .0 , .0 , .0 , .0 ) :=MW HC T SI IDT DC 
	min 
	f(x) 

	TR
	x 

	TR
	NsX 

	TR
	subject to 
	xi 
	= 1 

	TR
	i=1 

	TR
	tMW (1 − .0 )MW 
	T≤ mx ≤ tMW (1 + .0 )MW 

	TR
	tHC (1 − .0 )HC 
	≤ 
	hT x cT x 
	≤ tHC (1 + .0 HC ) 
	(6) 

	TR
	tT SI (1 − .0 )T SI 
	≤ θT x ≤ tT SI (1 + .0 )T SI 

	tDC (1− 
	tDC (1− 
	.0 (β)kDC ) ≤ kT (β) − Texp1 
	≤ tDC (1 + .0 )DC 

	tIDT (1− 
	tIDT (1− 
	.0 (x; p0, T0, φ) ≤ tIDT (1 + .0 )IDT ) ≤ τIDTcomp IDT 


	DC 
	Other thresholds used in this section are summarized in the following table 
	CPT 
	CPT 
	CPT 
	Average Value 
	Experimental Error 
	Threshold 

	Molecular Weight H/C Ratio Threshold Sooting Index Ignition Delay Distillation Curve Error 
	Molecular Weight H/C Ratio Threshold Sooting Index Ignition Delay Distillation Curve Error 
	120 (g/mol) 2 25 50 80 (K) 
	6 (g/mol) 0.01 1 1 1 (K) 
	0.05 0.005 0.04 0.02 0.0125 


	Table 2: Relative error thresholds used for quantifying uncertainty in surrogate descriptions based on experimental uncertainties reported in Won et al. [14] 
	Note that the prescribed error thresholds are bound to change with improvements in experimental techniques and this paper primarily demonstrates the method of uncertainty quantiﬁcation, which does not explicitly depend on the error thresholds. 
	The ignition delay time, which varies inversely with DCN is chosen as a constraint because the correlations used for converting to DCN are fuel-dependent, and to isolate its eﬀect from the uncertainty evaluation. For the same reason, simulations of the ignition delay time are performed at DCN conditions and they correspond to a stoichiometric mixture undergoing ignition at p= 22.4 bar and T= 833 K. It is noted that the current method enables the consideration of diﬀerent target conditions and combustion pro
	0 
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	The computational ignition delay time at the experimental composition was chosen as the representative tIDT for comparison as this oﬀers a fair benchmark and does not include mechanism errors in it, given 
	The computational ignition delay time at the experimental composition was chosen as the representative tIDT for comparison as this oﬀers a fair benchmark and does not include mechanism errors in it, given 
	that both comparative and representative values are calculated using the same chemical mechanism. This is clearly seen in Figure 1, where a large error, of up to an order of magnitude, is required to encompass the experimental ignition delay times while centered at the computationally predicted values, especially in the predicted negative temperature coeﬃcient (NTC) region. Thus, the ignition delay time at the experimental surrogate composition is being used for calibrating computational ignition delay time

	Since the primary focus of this study is the characterization of sensitivities, it is necessary to use consistent measurements given the strong dependence of ignition delay time on the method of measurement. In any case, this paper presents a generalized approach to this characterization and the method as such, remains robust irrespective of the procedure used to evaluate constraints. The objective function is chosen based on the geometric object under consideration, as described in detail in Appendix A. 
	The distillation curve error norm is obtained using the computed fractional distillation curve and the full fuel measurement based on the D2887 standard. This was already veriﬁed in Section 2.1 to provide a consistent basis for a constraint estimate and thus enables a physical CPT evaluation for any candidate composition. This is essential for computational surrogate characterizations as every optimization procedure requires the ability to evaluate constraints for any proposed composition. The target value 
	The ﬁrst application uses the surrogate mixture described in [7] for Jet-A using four compounds. Note that projections have been used to present this surrogate as well even though a 3D representation, similar to Figures 6 and 7, depicts all degrees of freedom. Information regarding the experimental composition being present in the interior of the calculated regions is crucial to determining the consistency of a surrogate and this can be decisively conveyed only through 2D images on paper. Both hypercuboid a
	Figure
	Figure 8: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 4-compound Jet-A surrogate in [7], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental composition 
	Figure 8 presents various characterizations for the 4-compound Jet-A surrogate [7]. It is important to remember that the area of the feasible region in the projection can be vastly larger compared to the size of a cross-section. However, all inscribed and circumscribed geometrical objects remain similarly conﬁned also in the projections. The minimal requirement for a consistent surrogate description between experiments and computations is that the experimental surrogate composition lies completely within th
	Figure
	Figure
	Figure 9: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate in [3], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental composition 
	Figure 9 shows the results for the JP-8 surrogate presented in [3] and illustrates the method for a diﬀerent fuel. There is agreement between experimental and computational surrogate descriptions as the experimental composition always lies within the feasible region (in red) demarcated by CPTs and in fact, within the maximal volume hyperellipsoid. The number of projections increases as there are now ﬁve compounds in the palette and in fact, the number of projections given the palette size Ns is equal to (Ns
	Figure
	Figure
	Figure 10: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate (Stanford A) in [23], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental composition 
	The JP-8 surrogates presented in [23] form the remaining part of the discussion in this subsection. Figure 10 shows that there is agreement with the experimental and computational surrogate descriptions as the experimental composition always lies within the feasible region demarcated by CPTs. Also, the maximal volume hyperellipsoid captures the experimental composition. Similar to the JP-8 surrogate of [3], the inner hypercuboid and hyperellipsoid are primarily restricted by Benzene and Toluene. 
	Figure
	Figure
	Figure 11: Projections in 2D of the feasible region in Eq. (6) (in red), inner and outer hypercuboids (in blue), along with axis-aligned ( . . . . . . . ) and maximum-volume ( ) hyperellipsoids for the 5-compound JP-8 surrogate (Stanford B) in [23], also listed in Table 1. The relative error thresholds are summarized in Table 2. The red triangle depicts the proposed experimental composition 
	Figure 11 further conﬁrms that the method developed in this work distinguishes surrogates with the same palette compounds but with slightly diﬀerent compositions, as can be seen by comparing Figures 10 and 11. The bottleneck for the inner geometric description is once again evident in the Benzene-Toluene pair. 
	An important advantage of using hypercuboids to describe the surrogate composition is that another candidate can be readily evaluated to be lying within the inner hypercuboid region by just checking the individual coordinates. This is not the case with the hyperellipsoid, where one has to evaluate (x− 
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	0
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	x)(BB)(x− x) ≤ 1 to verify if the composition x indeed lies within a hyperellipsoid centered at x and the eigenvalues of Q = BByield the principal axes lengths. The maximum-volume ellipsoid has an accompanying full matrix for Q, which needs to be provided as part of the surrogate description and can be cumbersome. However, this is a trade-oﬀ in favor of higher packing fractions of the search space and consistent capturing of the proposed experimental compositions is a decision to be made based on requiremen
	T 
	T 
	−1
	0 
	T 

	In summary, the surrogate descriptions for the four candidate fuel mixtures is presented along with the bounds based on error thresholds in Table 2. Thus, all four surrogate descriptions presented in Table 1 can be deemed as consistent given the CPTs under consideration, which include both physical and chemical 
	In summary, the surrogate descriptions for the four candidate fuel mixtures is presented along with the bounds based on error thresholds in Table 2. Thus, all four surrogate descriptions presented in Table 1 can be deemed as consistent given the CPTs under consideration, which include both physical and chemical 
	properties. The consistent nature of the surrogates under consideration is quite a coincidence because diﬀerent methodologies have been used to obtain the CPTs and also, the property targets diﬀered between the experimental studies. It also motivates the question of importance of a particular CPT, since the addition of certain CPTs has not violated the existing surrogate descriptions. This question is certainly of importance and is discussed in detail in the next section. 

	Name 
	Name 
	Name 
	Compound 
	Experiment 
	Inner Hypercuboid 
	Outer Hypercuboid 

	Dooley et al. [7] 
	Dooley et al. [7] 
	n-Propylbenzene 
	0.228 
	0.236 ± 0.004 
	0.224 ± 0.051 

	TR
	n-Dodecane 
	0.404 
	0.401 ± 0.006 
	0.399 ± 0.026 

	TR
	iso-Octane 
	0.295 
	0.296 ± 0.002 
	0.304 ± 0.025 

	TR
	Trimethylbenzene 
	0.073 
	(*) 
	(*) 

	Violi et al. [3] 
	Violi et al. [3] 
	Methylcyclohexane 
	0.1 
	0.047 ± 0.018 
	0.070 ± 0.070 

	TR
	Toluene 
	0.1 
	0.040 ± 0.003 
	0.057 ± 0.057 

	TR
	Benzene 
	0.01 
	0.082 ± 0.004 
	0.070 ± 0.070 

	TR
	iso-Octane 
	0.090 
	0.090 ± 0.065 
	0.108 ± 0.091 

	TR
	n-Dodecane 
	0.735 
	(*) 
	(*) 

	Stanford A [23] 
	Stanford A [23] 
	Methylcyclohexane 
	0.1 
	0.041 ± 0.018 
	0.094 ± 0.094 

	TR
	Toluene 
	0.1 
	0.056 ± 0.003 
	0.056 ± 0.056 

	TR
	Benzene 
	0.01 
	0.068 ± 0.003 
	0.074 ± 0.074 

	TR
	iso-Octane 
	0.25 
	0.293 ± 0.046 
	0.275 ± 0.118 

	TR
	n-Dodecane 
	0.54 
	(*) 
	(*) 

	Stanford B [23] 
	Stanford B [23] 
	Methylcyclohexane 
	0.1 
	0.056 ± 0.010 
	0.078 ± 0.078 

	TR
	Toluene 
	0.295 
	0.265 ± 0.002 
	0.216 ± 0.103 

	TR
	Benzene 
	0.01 
	0.050 ± 0.002 
	0.112 ± 0.112 

	TR
	iso-Octane 
	0.055 
	0.083 ± 0.036 
	0.089 ± 0.073 

	TR
	n-Dodecane 
	0.54 
	(*) 
	(*) 


	Table 3: Summary of experimental surrogate composition and its hypercuboidal characterization using error thresholds presented in Table 2 for molecular weight, H/C ratio, TSI, distillation curve error and ignition delay time at DCN conditions for the jet fuel surrogates proposed in [3, 7, 23]. The last species is obtained from enforcing total species conservation and is denoted by (*) 
	-

	Tables 3 and 4 provide a summary of results obtained for the four surrogate mixtures considered here; xAA and xMV denote the centers of axis-aligned and maximum-volume hyperellipsoid, respectively. The calculated centers of all inscribed objects, or in other words, the surrogate compositions corresponding to the centers of the inner hypercuboid, axis-aligned hyperellipsoid and maximum-volume hyperellipsoid are indeed veriﬁed to satisfy the target properties. This is a direct consequence of the construction 
	Name 
	Name 
	Name 
	Compound 
	xAA 
	xMV 
	⎤Transformation Matrix (Q1/2)⎡ 

	Dooley et al. [7] 
	Dooley et al. [7] 
	n-propylbenzene n-Dodecane iso-Octane Trimethylbenzene 
	0.236 ± 0.006 0.397 ± 0.003 0.296 ± 0.003 (*) 
	0.234 0.400 0.297 (*)
	⎤ ⎥⎥⎥⎦ 0.027 0.009 −0.011 0.012 −0.005 0.009 ⎢⎢⎢⎣ ⎡ 

	Violi et al. [3] 
	Violi et al. [3] 
	Methylcyclohexane Toluene Benzene iso-Octane n-Dodecane 
	0.067 ± 0.011 0.070 ± 0.009 0.047 ± 0.011 0.075 ± 0.014 (*) 
	0.058 0.055 0.066 0.094 (*) 
	⎥⎥⎥⎥⎥⎥⎦ ⎤ 0.050 0.010 −0.015 −0.006⎢⎢⎢⎢⎢⎢⎣ ⎡ 0.039 −0.037 −0.000 0.053 0.001 0.077 

	Stanford A [23] 
	Stanford A [23] 
	Methylcyclohexane Toluene Benzene iso-Octane n-Dodecane 
	0.036 ± 0.013 0.047 ± 0.008 0.076 ± 0.010 0.260 ± 0.016 (*) 
	0.056 0.057 0.064 0.288 (*) 
	⎥⎥⎥⎥⎥⎥⎦ ⎤ ⎢⎢⎢⎢⎢⎢⎣ ⎡ 0.051 0.009 −0.014 −0.012 0.038 −0.036 −0.003 0.050 0.004 0.073 

	Stanford B [23] 
	Stanford B [23] 
	Methylcyclohexane Toluene Benzene iso-Octane n-Dodecane 
	0.033 ± 0.005 0.237 ± 0.007 0.084 ± 0.008 0.084 ± 0.005 (*) 
	0.055 0.240 0.075 0.078 (*) 
	⎥⎥⎥⎥⎥⎥⎦ ⎢⎢⎢⎢⎢⎢⎣ 0.048 0.008 −0.015 −0.004 0.048 −0.045 0.002 0.057 −0.005 0.061 


	Table 4: Summary of hyperellipsoidal characterizations using error thresholds presented in Table 2 for the jet fuel surrogates proposed in [3, 7, 23]. xAA and xMV correspond to axis-aligned (AA) and maximum-volume (MV) centers respectively. The last species is obtained from enforcing total species conservation and is denoted by (*) 
	as the center lies in the feasible region, given that the geometric objects are inscribed within it. Further details regarding the veriﬁcation of computational surrogates is presented in Appendix B. 
	In the context of numerics, it is important to note that the transformation matrix is always symmetric, given that it is obtained by solving a semi-deﬁnite program, presented in Eq. (14), where it is required that B is positive-deﬁnite. The ellipsoid matrix Q, as previously described in this section, is given by BB. Since B is symmetric (positive-deﬁnite), it follows that B can be equally represented using Qas the Cholesky decomposition Q = BBis unique for symmetric matrices. 
	T 
	1
	/2 
	T 

	The runtime to generate the table of results is of the order of a few seconds, given the ignition delay time maps, which are obtained as discussed in Section 2.3. The IDT maps are generated for a larger threshold (than 0.02 in this case) so that the optimization routines for a diﬀerent threshold can be repeated without 
	additional overhead. The following sections discuss the utility of this approach in providing information 
	regarding the importance of a particular CPT and its connection to weighting factors. 
	3.2. Importance of particular CPTs 
	3.2. Importance of particular CPTs 
	Previous computational approaches [10, 11] framed the problem of surrogate representation using a scalar objective function despite it being a vector optimization problem, where errors between multiple properties need to be minimized. This is a standard technique in optimization theory and is called scalarization, which is used to ﬁnd the Pareto optimal of a given vector optimization problem. The problem of surrogate representation falls under the speciﬁc category of multicriterion optimization, where the c
	It is useful to deﬁne that a point x is ‘better’ than y if Fi(x) ≤ Fi(y) for all i, as it simpliﬁes the concept of a Pareto optimal point, which is deﬁned as a point for which no other feasible point is better than it. Thus, there can be a set of points called the Pareto surface, which solely consist of Pareto optimal points. When this surface is just one point, it is called the optimal and coincides with the notion of optimal for a vector optimization problem. Further details regarding these concepts are w
	The objective function of the regression model used in [10, 11] is precisely the Lagrangian dual function of the optimization problem in Eq. (6), with error thresholds set exactly to zero, since the experimental properties are assumed to be exact. The weighting factors are the dual variables associated with the original, or in other words, primal problem. The Lagrange dual function only gives a lower bound on the optimal of the primal problem. A natural question is then to ﬁnd the optimal weighting factors 
	The objective function of the regression model used in [10, 11] is precisely the Lagrangian dual function of the optimization problem in Eq. (6), with error thresholds set exactly to zero, since the experimental properties are assumed to be exact. The weighting factors are the dual variables associated with the original, or in other words, primal problem. The Lagrange dual function only gives a lower bound on the optimal of the primal problem. A natural question is then to ﬁnd the optimal weighting factors 
	imposed by CPTs and the coarse-grained approach to ﬁnding weighting factors, both of which are issues acknowledged by the authors. These issues are avoided in this work by connecting optimal dual variables to weighting factors. 

	When both the objective function and constraints are convex, a simple condition exists for constraint qualiﬁcation and is commonly referred to as Slater’s condition [34, pg. 226]. This serves as one of the main reasons for adhering to a convex reformulation in the current approach, in addition to the provability of convergence for various numerical methods used to solve the optimization problem. Slater’s condition simply states that if the problem is convex and there exists a point which is strictly feasibl
	The deﬁnition for importance factors provided in [11] depends on how the weighting factors are increased, which has been done in powers of 10 to span a global range. Along with it, for a particular set of CPTs, the weighting factor is dependent on the particular optimization process, which should not be the case. Under conditions of strong duality, this notion can be made more consistent. For a constraint Fi(x) ≤ vi, let p (v) denote the optimal value of the objective function for a given v and that the ori
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	∂p
	∂p
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	− (0) = λ (7)
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	∂vi
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	The left-hand-side quantity in Eq. (7) is referred to as the sensitivity coeﬃcient of a particular constraint. This can be written speciﬁcally for Eq. (6) and thus, the sensitivity coeﬃcient of each CPT, denoted by γi, is deﬁned as 
	1 ∂f 
	γj = − (8)
	tj 
	∂.
	0 

	j 
	where f corresponds to the objective functions used in Section 2.3 and tj is the target value of the jCPT. However, only the inner hypercuboid and maximum-volume ellipsoid can be utilized for this purpose. This is because the problem of ﬁnding the outer hypercuboid involves solution to multiple optimization problems and as this involves several objective functions, a consistent deﬁnition of sensitivity coeﬃcient cannot be made. Similarly, the axis-aligned hyperellipsoid involves objective functions in a coo
	th 

	is stretched as a function of the error thresholds themselves and the objective function will thus not reveal 
	the exact sensitivity to the thresholds. 
	It is important to remember that the sensitivity coeﬃcient γi between diﬀerent objective functions cannot be compared. Even in the case of comparing diﬀerent CPTs using the same objective function, one must not ascribe meaning to the absolute number, but only to the relative magnitudes of the sensitivity coeﬃcients, since the objective function is unrelated to any CPT as it is based on a measure of the feasible region. It is for this reason that sensitivity coeﬃcients deﬁned using this method are recommende
	Name 
	Name 
	Name 
	Inner Hypercuboid 
	MV Hyperellipsoid 

	TR
	γM W 
	γHC 
	γMW 
	γHC 

	Dooley et al. [7] 
	Dooley et al. [7] 
	0.0 
	1.0 
	0.044 
	0.999 

	Violi et al. [3] 
	Violi et al. [3] 
	0.0 
	1.0 
	0.0 
	1.0 

	Stanford A [23] 
	Stanford A [23] 
	1.0 
	0.0 
	0.044 
	0.999 

	Stanford B [23] 
	Stanford B [23] 
	1.0 
	0.0 
	0.044 
	0.999 


	Table 5: Sensitivity coeﬃcients for Eq. (6) when characterized using the inner hypercuboid along and maximum-volume (MV) hyperellipsoid at error thresholds for molecular weight (γMW ) and H/C ratio (γHC ) presented in Table 2. Values have been rounded to zero if less than 10
	−6 

	Table 5 provides a summary of the sensitivity coeﬃcients at the same error thresholds of .used to
	0 

	i 
	generate the results in Section 3.1 for molecular weight and H/C ratio. The results illustrate that the importance of a CPT is speciﬁc to the objective function, especially in the case of the surrogate mixtures in [23], where, depending on whether the inner hypercuboid or maximum-volume hyperellipsoid is used to characterize the search space, the sensitivity coeﬃcients are modiﬁed. Thus, optimal weighting factors and in this case, sensitivity coeﬃcients, should not be used as a measure of importance for CPT
	3.3. Eﬀect of CPT models 
	3.3. Eﬀect of CPT models 
	The use of palette-speciﬁc regression models or linear blending rules has been commented upon in Section 2.1, but the eﬀect of using such schemes on the ﬁnal surrogate composition remains to be probed. This subsection discusses the results obtained by swapping the ignition delay time using the full mechanism with a linear blending rule for DCN. Kim et al. [12] use a volume-fraction weighted approach for obtaining the DCN of candidate mixtures. Ahmed et al. [11] construct surrogates using a linear blending r
	The optimization problem described in Eq. (6) is solved with the IDT constraint replaced by a DCN constraint and the error threshold being the same as prescribed for IDT in Table 2. The DCN is obtained using a linear mole-fraction blending rule [11], written as DCN = dx, where d =[d,d,..., dN] represents the pure-component DCNs, which has been obtained from [41]. 
	T 
	1
	2
	s 

	Name 
	Name 
	Name 
	Compound 
	InnerHypercuboid 
	Blended InnerHypercuboid 
	OuterHypercuboid 
	Blended OuterHypercuboid 

	Dooley et al. [7] 
	Dooley et al. [7] 
	n-Propylbenzene n-Dodecane iso-OctaneTrimethylbenzene 
	0.236 ± 0.004 0.401 ± 0.006 0.296 ± 0.002 (*) 
	0.245 ± 0.004 0.406 ± 0.004 0.291 ± 0.002 (*) 
	0.224 ± 0.051 0.399 ± 0.026 0.304 ± 0.025 (*) 
	0.258 ± 0.017 0.404 ± 0.013 0.288 ± 0.010 (*) 

	Violi et al. [3] 
	Violi et al. [3] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.047 ± 0.018 0.040 ± 0.003 0.082 ± 0.004 0.090 ± 0.065 (*) 
	0.040 ± 0.006 0.034 ± 0.004 0.095 ± 0.004 0.104 ± 0.006 (*) 
	0.070 ± 0.070 0.057 ± 0.057 0.070 ± 0.070 0.108 ± 0.091 (*) 
	0.070 ± 0.070 0.057 ± 0.057 0.070 ± 0.070 0.091 ± 0.074 (*) 

	Stanford A [23] 
	Stanford A [23] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.041 ± 0.018 0.056 ± 0.003 0.068 ± 0.003 0.293 ± 0.046 (*) 
	0.070 ± 0.005 0.051 ± 0.003 0.066 ± 0.003 0.281 ± 0.004 (*) 
	0.094 ± 0.094 0.056 ± 0.056 0.074 ± 0.074 0.275 ± 0.118 (*) 
	0.067 ± 0.067 0.061 ± 0.052 0.069 ± 0.069 0.274 ± 0.065 (*) 

	Stanford B [23] 
	Stanford B [23] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.056 ± 0.010 0.265 ± 0.002 0.050 ± 0.002 0.083 ± 0.036 (*) 
	0.050 ± 0.004 0.224 ± 0.002 0.090 ± 0.003 0.107 ± 0.004 (*) 
	0.078 ± 0.078 0.216 ± 0.103 0.112 ± 0.112 0.089 ± 0.073 (*) 
	0.086 ± 0.069 0.235 ± 0.066 0.074 ± 0.074 0.081 ± 0.065 (*) 


	Table 6: Summary of hypercuboidal characterization using error thresholds presented in Table 2 with IDT or linear mole-fraction blended DCN for the jet fuel surrogates proposed in [3, 7, 23]. The last species is obtained from enforcing total species conservation and is denoted by (*) 
	Name 
	Name 
	Name 
	Compound 
	xAA 
	Blended xAA 
	xM V 
	Blended xM V 

	Dooley et al. [7] 
	Dooley et al. [7] 
	n-Propylbenzene n-Dodecane iso-OctaneTrimethylbenzene 
	0.236 ± 0.006 0.397 ± 0.003 0.296 ± 0.003 (*) 
	0.247 ± 0.006 0.404 ± 0.004 0.290 ± 0.003 (*) 
	0.2340.4000.297(*) 
	0.2500.4070.290(*) 

	Violi et al. [3] 
	Violi et al. [3] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.067 ± 0.011 0.070 ± 0.009 0.047 ± 0.011 0.075 ± 0.014 (*) 
	0.052 ± 0.009 0.056 ± 0.007 0.068 ± 0.009 0.095 ± 0.010 (*) 
	0.0580.0550.0660.094(*) 
	0.0580.0540.0660.091(*) 

	Stanford A [23] 
	Stanford A [23] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.036 ± 0.013 0.047 ± 0.008 0.076 ± 0.010 0.260 ± 0.016 (*) 
	0.044 ± 0.008 0.033 ± 0.006 0.092 ± 0.008 0.301 ± 0.007 (*) 
	0.0560.0570.0640.288(*) 
	0.0640.0570.0620.283(*) 

	Stanford B [23] 
	Stanford B [23] 
	Methylcyclohexane Toluene Benzeneiso-Octanen-Dodecane 
	0.033 ± 0.005 0.237 ± 0.007 0.084 ± 0.008 0.084 ± 0.005 (*) 
	0.066 ± 0.006 0.255 ± 0.006 0.055 ± 0.006 0.088 ± 0.006 (*) 
	0.0550.2400.0750.078(*) 
	0.0780.2420.0670.080(*) 


	Table 7: Summary of hyperellipsoidal characterizations using error thresholds presented in Table 2 with IDT or linear mole-fraction blended DCN for the jet fuel surrogates proposed in [3, 7, 23]. xAA and xMV correspond to axis-aligned (AA) and maximum-volume (MV) centers respectively. The last species is obtained from enforcing total species conservation and is denoted by (*) 
	Tables 6 and 7 summarize the four surrogate mixtures and their characterizations using a linear mole-fraction blended DCN (referred to as “Blended”) instead of the ignition delay time as a CPT. The diﬀerences are clear as they are present for every surrogate composition and characterization, thus highlighting the importance of using consistent and uniform deﬁnitions of CPTs while evaluating surrogate compositions. Some of the mole fractions diﬀer by over 20%, as observed in the case of iso-octane for variou
	4. Multi-parametric optimization approach to surrogate representation 
	The results presented so far assume that the error thresholds are ﬁxed and it is useful to study the variation of composition ranges with thresholds as it provides a measure of sensitivity. This translates to being able to solve the convex optimization problems presented in Section 2 with the error thresholds as parameters. The theory for multi-parametric optimization is well-developed in the case of linear constraints and objective functions [42] and helps to achieve the same. 
	Molecular weight, H/C ratio, TSI and sum of mole fractions are the linear constraints in Eq. (4) and can be visualized as planes demarcating feasible regions in composition space. However, when the problem is to be solved with .HC as a parameter, the H/C constraint can be written as 
	(h − tHC (1 − .HC )c)x ≥ 0 
	T 

	(9) 
	(h − tHC (1 + .HC )c)x ≤ 0 
	T 

	Equation (9) represents a ‘bilinear’ constraint due to the product of the parameter .HC and the optimization variable x, both of which are unknowns in a multi-parametric optimization problem. Such bilinear constraints are, however, computationally tractable and can be solved by relaxing the original optimization problem using McCormick envelopes [43]. 
	-

	The main beneﬁt of the multi-parametric approach is that one can obtain information as functions of the error thresholds, which would have previously taken one complete solution to the optimization problem for each parameter set. To illustrate the use of the multi-parametric approach, the lower and upper bounds for mole fractions are derived for the surrogate mixtures presented in Table 1, as a function of the two linear constraints, molecular weight and TSI. The objective function is identical to the one u
	The main beneﬁt of the multi-parametric approach is that one can obtain information as functions of the error thresholds, which would have previously taken one complete solution to the optimization problem for each parameter set. To illustrate the use of the multi-parametric approach, the lower and upper bounds for mole fractions are derived for the surrogate mixtures presented in Table 1, as a function of the two linear constraints, molecular weight and TSI. The objective function is identical to the one u
	can be summarized as 

	z(x, .MW , .T SI ) := minimize/maximize 
	z(x, .MW , .T SI ) := minimize/maximize 
	z(x, .MW , .T SI ) := minimize/maximize 
	xi 

	x 
	x 

	TR
	NsX 

	subject to 
	subject to 
	xi = 1 

	TR
	i=1 
	(10) 

	TR
	− .MW 
	T≤ m x − tM W 
	≤ .MW 

	TR
	hT x 

	TR
	− .T SI ≤ 
	cT x 
	− tT SI ≤ .T SI 


	Although the optimal can be expressed in closed form for linear objective functions and constraints, the use of computational tools is necessary to identify the regions of applicability of a particular solution. The optimal solutions are piecewise-linear functions and can be expressed in terms of error thresholds. The multi-parametric optimization was performed using the MPT3 toolbox [44], which was also coupled with Cantera [45] for obtaining other physicochemical properties. 
	Figure 12 shows the lower and upper bounds of mole fractions as a function of the speciﬁed molecular weight and TSI threshold. The proposed experimental compositions lie along the .MW ,.T SI = 0 line as they correspond to the exact target properties. The threshold is depicted up to an arbitrary value of 25 g/mol to speciﬁcally illustrate that it can be evaluated beyond the prescribed experimental uncertainty of 6 g/mol in [14]. Similarly, the TSI threshold is presented up to an arbitrary value of 4. Two pla
	-

	Once the compositions are known as functions of error thresholds, the problem of determining the eﬀect of a particular constraint simply translates to evaluating the slope of these piecewise-linear functions at the given error thresholds. Thus, knowledge about sensitivity coeﬃcients, optimal weighting factors and dual variables, which are equivalent upto constant factors as discussed in Section 3.2 can be obtained directly. It is important to remember that these depend on the objective function under consid
	5. Conclusions 
	In this work, a computational procedure is presented to construct surrogate descriptions of fuels using information on experimental uncertainty. This study also provides a sound theoretical foundation using tools from optimization theory and the described computational procedure is compared with experimental surrogates for two aviation fuels, Jet-A and JP-8. Also, a consistent description of physical properties of fuels 
	Figure
	(a) JP-8 Surrogate from [3] (b) Jet-A Surrogate from [7] 
	Figure
	(c) JP-8 Surrogate (Stanford A) from [23] (d) JP-8 Surrogate (Stanford B) from [23] 
	Figure 12: Lower and upper bound of mole fractions in surrogates proposed in [3, 7, 23] respectively as a function of the molecular weight threshold .MW , which ranges from 0 ≤ .MW ≤ 25 (g/mol) 
	in surrogate descriptions is presented through the use of the recent ASTM D2887 standard. Both physical and chemical combustion property targets, including ignition delay time and distillation curve errors, are used for the characterization of surrogates in the presence of experimental uncertainty. Particularly, agreement between experimental and computational descriptions of surrogates is shown to ensure consistency between the two concepts. Most of all, it is shown that surrogate compositions require the 
	in surrogate descriptions is presented through the use of the recent ASTM D2887 standard. Both physical and chemical combustion property targets, including ignition delay time and distillation curve errors, are used for the characterization of surrogates in the presence of experimental uncertainty. Particularly, agreement between experimental and computational descriptions of surrogates is shown to ensure consistency between the two concepts. Most of all, it is shown that surrogate compositions require the 
	eﬀect of using simpliﬁed models for CPTs on the ﬁnal surrogate composition is shown using the example of linear blending rules for ignition delay. The framework for multi-parametric optimization approach is presented and it is shown that sensitivity information can be obtained as a function of experimental uncertainty by solving only one optimization problem. The question of whether the palette compounds can be obtained using an algorithm can be addressed by generalizing the current optimization framework t
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	Nomenclature 
	Greek Symbols 
	β Recovered mass fraction 
	.Relative error threshold for jCPT 
	0 
	j 
	th 

	.j Absolute error threshold for jCPT 
	th 

	γj Sensitivity coeﬃcient 
	λj Dual variable for constraint j 
	E Ellipsoid 
	θi Threshold sooting index of compound i 
	Roman Symbols 
	A Polyhedron matrix in composition space 
	th
	i

	ai row in constraint matrix 
	B Ellipsoid transformation matrix b Polyhedron right-hand side in composition space l Lower bound of hypercuboid m Molecular weight Q Ellipsoid quadratic transformation, Q = BBu Upper bound of hypercuboid v Constraint perturbation w General point in composition space x Mole fraction ci Number of carbon atoms in species i di Derived cetane number of compound i f Objective function Fj Constraint function for jCPT hi Number of hydrogen atoms in species i Nnl Number of nonlinear CPTs Ns Number of species/compou
	T 
	th 

	∗ 
	p Optimal objective when constraints perturbed by v pAmbient pressure R Chebyshev radius Sj Feasible region for jCPT TAmbient temperature tj Target value for jCPT 
	0 
	th 
	0 
	th 

	DCN Derived cetane number 
	Superscripts 
	+ Positive entries 
	– Negative entries 
	Subscripts 
	AA Axis-aligned DC Distillation curve HC H/C ratio IDT Ignition delay time in Inner hypercuboid MV Maximum-volume MW Molecular weight TSI Threshold sooting index 
	Supplementary Information 
	The MATLAB program to quantify surrogate uncertainty is available online at / MPT_surr and can be utilized for further characterizations of surrogates. The data for the ignition delay times is generated by a separate parallel Python program, which can also be found online at http: //. 
	http://github.com/IhmeGroup
	-
	github.com/IhmeGroup/pyIDT

	A. Numerical methods for surrogate representation 
	This section discusses the numerical methods used to obtain the surrogate representation in this paper. First, the inner and outer hypercuboids are presented, followed by the discussion on ellipsoids. Despite the similarities in the geometrical idea of using bounding ﬁgures, but of diﬀerent shapes, the discussion in this section clearly illustrates that there are many diﬀerences in the numerical approach between hypercuboids and hyperellipsoids. The constraints are approximated using a convex hull, as discu
	0 
	i




	A.1. Hypercuboids 
	A.1. Hypercuboids 
	Suppose l and u denote the lower and upper limits of coordinates in composition space of the inner hypercuboid, then l ≤ x ≤ u denotes the hypercuboid itself. The volume of the hypercuboid is given by 
	Ns
	Y 
	(ui − li). It is necessary to utilize an equivalent objective function which is convex for it to be compatible with optimization solvers [46]. The geometric mean is known to be concave [34, pg. 74] and thus its negative can be minimized while being constrained inside the polytope as a convex optimization problem. It must be ensured that the entire hypercuboid lies inside the polytope and for this, it is suﬃcient that the vertices satisfy the constraints. However, this leads to an exponential number of const
	+ 
	ij 
	− 
	+
	−
	-

	ij 
	volume axis-aligned hypercuboid that strictly lies inside the search space is given by the convex optimization 
	problem 
	problem 
	problem 

	TR
	minimize 
	− geometric mean(u − l) 

	TR
	x 
	(11) 

	TR
	subject to 
	A+ u + A−l ≤ b 


	The outer hypercuboid is easier to construct and essentially involves solving multiple convex optimization problems, each one either minimizing or maximizing a particular coordinate while being restricted to the polytope. This can be written as 
	minimize/maximize xi 
	x 
	(12) 
	subject to Ax ≤ b Here, xi denotes the i-th coordinate in composition space. 

	A.2. Hyperellipsoids 
	A.2. Hyperellipsoids 
	As discussed in Section 2.3.2, a hyperellipsoid around the surrogate composition is represented as 
	E = {Bw + x such that kwk≤ 1} (13)
	E = {Bw + x such that kwk≤ 1} (13)

	2 
	where B can be assumed, without loss of generality, to be a positive-deﬁnite matrix. It is useful to note that axis-aligned hyperellipsoids are given by diagonal matrices. The volume is proportional to the determinant, denoted by det(B), and its logarithm is commonly used as an objective function, as it can be shown to be a concave function [34, pg. 74]. The search space polytope can be represented plane-wise as S = 
	T
	{w such that aw ≤ bi}. Since the maximum-volume hyperellipsoid must lie completely within this region, 
	i 

	T
	it must be that supa (Bw + x) ≤ bi. On expanding the product, it is noted that this is equivalent to
	it must be that supa (Bw + x) ≤ bi. On expanding the product, it is noted that this is equivalent to
	kwk≤1 


	i
	2 
	T
	kBaik +ax ≤ bi and serves as the constraint for the optimization problem. With this, the maximal-volume hyperellipsoid can be written as 
	i 

	minimize − log det(B) 
	x 
	(14) 
	T
	subject to kBaik + ax ≤ bi
	i 

	2 
	Axis-aligned hyperellipsoids cannot be obtained using the previous approach as a diagonal-only constraint on the matrix B is not a part of disciplined convex programming. However, they can be obtained by ﬁtting a maximal-volume hypersphere in a scaled search space, where it spans equally in all dimensions, and is then rescaled back to the original [47]. The center of the maximum-volume hypersphere is commonly referred to as the Chebyshev center and similar terminology is used for the radius and the hypersph
	T
	Once again, writing the convex polytope in a plane-wise fashion, it must be that sup(x + Ru) ≤ bi
	kuk 

	≤1 i
	a

	2
	T
	which can be simpliﬁed as ax + R kaik Thus, the Chebyshev center and radius R can be found by 
	i 

	2 isolving the linear program maximize R 
	≤ b
	. 

	x 
	T (15)
	subject to ax + R kaik≤ bi
	i 

	2 
	R ≥ 0 
	Once the radius and center are obtained, the space is rescaled back to the original and it is important to remember that both the axes lengths and origin are to be updated. As mentioned in Section 2.3.2, the same approach can be used to ﬁt an arbitrary object inside a polyhedron. 
	B. Veriﬁcation of computational surrogates 
	This section summarizes the various computational surrogate compositions and veriﬁes that their CPTs are indeed within the prescribed experimental uncertainties. As discussed in Section 3.1, the centers of the inner hypercuboid, axis-aligned hyperellipsoid and maximum-volume hyperellipsoid serve as sample points inside the geometric objects used to describe the feasible region and should satisfy the CPTs within experimental uncertainty. The centers corresponding to each surrogate listed in Table 1 were pres
	Name 
	Name 
	Name 
	Methylcyclohexane 
	-

	Toluene 
	-

	Benzene 
	-

	iso-Octane 
	n-Dodecane 
	-

	n-Propylbenzene 
	-

	1,3,5-Trimethylbenzene 
	-


	Jet-A POSF 4658 (Dooley et al. [7]) 
	Jet-A POSF 4658 (Dooley et al. [7]) 
	0.296 
	0.401 
	0.236 
	0.067 

	JP-8 (Violi et al. [3]) 
	JP-8 (Violi et al. [3]) 
	0.047 
	0.040 
	0.082 
	0.090 
	0.741 

	JP-8 (Stanford A [23]) 
	JP-8 (Stanford A [23]) 
	0.041 
	0.056 
	0.068 
	0.293 
	0.542 

	JP-8 (Stanford B [23]) 
	JP-8 (Stanford B [23]) 
	0.056 
	0.265 
	0.050 
	0.083 
	0.546 


	Table 8: Compounds used in palettes along with their mole fractions for the inner hypercuboid center xin 
	Name 
	Name 
	Name 
	Methylcyclohexane 
	-

	Toluene 
	-

	Benzene 
	-

	iso-Octane 
	n-Dodecane 
	-

	n-Propylbenzene 
	-

	1,3,5-Trimethylbenzene 
	-


	Jet-A POSF 4658 (Dooley et al. [7]) 
	Jet-A POSF 4658 (Dooley et al. [7]) 
	0.296 
	0.397 
	0.236 
	0.071 

	JP-8 (Violi et al. [3]) 
	JP-8 (Violi et al. [3]) 
	0.067 
	0.070 
	0.047 
	0.075 
	0.741 

	JP-8 (Stanford A [23]) 
	JP-8 (Stanford A [23]) 
	0.036 
	0.047 
	0.076 
	0.260 
	0.581 

	JP-8 (Stanford B [23]) 
	JP-8 (Stanford B [23]) 
	0.033 
	0.237 
	0.084 
	0.084 
	0.562 


	Table 9: Compounds used in palettes along with their mole fractions for the axis-aligned hyperellipsoid center xAA 
	Name 
	Name 
	Name 
	Methylcyclohexane 
	-

	Toluene 
	-

	Benzene 
	-

	iso-Octane 
	n-Dodecane 
	-

	n-Propylbenzene 
	-

	1,3,5-Trimethylbenzene 
	-


	Jet-A POSF 4658 (Dooley et al. [7]) 
	Jet-A POSF 4658 (Dooley et al. [7]) 
	0.297 
	0.400 
	0.234 
	0.069 

	JP-8 (Violi et al. [3]) 
	JP-8 (Violi et al. [3]) 
	0.05 
	0.055 
	0.066 
	0.094 
	0.735 

	JP-8 (Stanford A [23]) 
	JP-8 (Stanford A [23]) 
	0.056 
	0.057 
	0.064 
	0.288 
	0.535 

	JP-8 (Stanford B [23]) 
	JP-8 (Stanford B [23]) 
	0.033 
	0.237 
	0.084 
	0.084 
	0.562 


	Table 10: Compounds used in palettes along with their mole fractions for the maximum-volume hyperellipsoid center xMV 
	The CPTs for each surrogate are evaluated at the three centers and are compared with the lower and upper bounds. The results are summarized in Tables 11 to 14. 
	CPT 
	CPT 
	CPT 
	xin 
	xAA 
	xMV 
	Lower Bound 
	Upper Bound 

	Molecular Weight 
	Molecular Weight 
	138.53 
	138.35 
	138.49 
	131.76 
	145.63 

	H/C Ratio 
	H/C Ratio 
	1.957 
	1.954 
	1.958 
	1.950 
	1.969 

	Threshold Sooting Index 
	Threshold Sooting Index 
	21.432 
	21.634 
	21.429 
	20.586 
	22.301 

	Ignition Delay (s) 
	Ignition Delay (s) 
	14.32e-04 
	14.39e-04 
	14.11e-04 
	12.62e-04 
	16.40e-04 

	Distillation Curve Error (K) 
	Distillation Curve Error (K) 
	52.355 
	52.313 
	52.069 
	51.701 
	53.010 

	Table 11: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the Jet-A surrogate in [2] 
	Table 11: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the Jet-A surrogate in [2] 


	CPT 
	CPT 
	CPT 
	xin 
	xAA 
	xMV 
	Lower Bound 
	Upper Bound 

	Molecular Weight 
	Molecular Weight 
	151.00 
	151.33 
	150.63 
	143.73 
	158.86 

	H/C Ratio 
	H/C Ratio 
	2.085 
	2.086 
	2.085 
	2.069 
	2.094 

	Threshold Sooting Index 
	Threshold Sooting Index 
	9.768 
	9.852 
	9.839 
	9.447 
	10.234 

	Ignition Delay (s) 
	Ignition Delay (s) 
	5.99e-04 
	6.09e-04 
	6.18e-04 
	5.15e-04 
	6.29e-04 

	Distillation Curve Error (K) 
	Distillation Curve Error (K) 
	94.400 
	94.703 
	94.541 
	93.699 
	96.071 

	Table 12: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 surrogate in [3] 
	Table 12: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 surrogate in [3] 


	CPT 
	CPT 
	CPT 
	xin 
	xAA 
	xMV 
	Lower Bound 
	Upper Bound 

	Molecular Weight 
	Molecular Weight 
	139.20 
	141.91 
	139.61 
	133.28 
	147.31 

	H/C Ratio 
	H/C Ratio 
	2.092 
	2.092 
	2.092 
	2.079 
	2.100 

	Threshold Sooting Index 
	Threshold Sooting Index 
	9.719 
	9.780 
	9.804 
	9.409 
	10.194 

	Ignition Delay (s) 
	Ignition Delay (s) 
	8.26e-04 
	7.78e-04 
	8.48e-04 
	7.46e-04 
	9.17e-04 

	Distillation Curve Error (K) 
	Distillation Curve Error (K) 
	96.037 
	95.431 
	95.875 
	95.175 
	97.585 

	Table 13: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 Stanford A surrogate presented in [23] 
	Table 13: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 Stanford A surrogate presented in [23] 


	It can be observed that every CPT for all centers and surrogates lie within the range of experimental uncertainty, and thus within the feasible region. Thus, the surrogates obtained from computations are consistent with experimental descriptions up to the reported range of uncertainties and hence, unifying both 
	It can be observed that every CPT for all centers and surrogates lie within the range of experimental uncertainty, and thus within the feasible region. Thus, the surrogates obtained from computations are consistent with experimental descriptions up to the reported range of uncertainties and hence, unifying both 
	computational and experimental surrogate descriptions. 

	CPT 
	CPT 
	CPT 
	xin 
	xAA 
	xMV 
	Lower Bound 
	Upper Bound 

	Molecular Weight 
	Molecular Weight 
	136.19 
	136.81 
	136.15 
	129.20 
	142.80 

	H/C Ratio 
	H/C Ratio 
	1.934 
	1.934 
	1.935 
	1.902 
	1.939 

	Threshold Sooting Index 
	Threshold Sooting Index 
	15.624 
	15.583 
	15.429 
	14.902 
	16.144 

	Ignition Delay (s) 
	Ignition Delay (s) 
	7.67e-04 
	7.72e-04 
	7.68e-04 
	7.07e-04 
	8.92e-04 

	Distillation Curve Error (K) 
	Distillation Curve Error (K) 
	97.148 
	96.986 
	96.946 
	96.931 
	99.385 

	Table 14: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 Stanford B surrogate presented in [23] 
	Table 14: CPTs evaluated at the inner hypercuboid center (xin), axis-aligned hyperellipsoid (xAA) and maximum-volume hyperellipsoid (xMV ) along with lower and upper bounds based on the experimental uncertainties in Table 2 for the JP-8 Stanford B surrogate presented in [23] 
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